Newton Polygon Stratification of the Torelli Locus in Unitary Shimura Varieties

Author:

Li Wanlin1,Mantovan Elena2,Pries Rachel3,Tang Yunqing4

Affiliation:

1. Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2. Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

3. Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA

4. Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

Abstract

Abstract We study the intersection of the Torelli locus with the Newton polygon stratification of the modulo $p$ reduction of certain Shimura varieties. We develop a clutching method to show that the intersection of the open Torelli locus with some Newton polygon strata is non-empty. This allows us to give a positive answer, under some compatibility conditions, to a question of Oort about smooth curves in characteristic $p$ whose Newton polygons are an amalgamate sum. As an application, we produce infinitely many new examples of Newton polygons that occur for smooth curves that are cyclic covers of the projective line. Most of these arise in inductive systems that demonstrate unlikely intersections of the open Torelli locus with the Newton polygon stratification in Siegel modular varieties. In addition, for the 20 special Shimura varieties found in Moonen’s work, we prove that all Newton polygon strata intersect the open Torelli locus (if $p>>0$ in the supersingular cases).

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference39 articles.

1. The integral monodromy of hyperelliptic and trielliptic curves;Achter;Math. Ann.,2007

2. Monodromy of the $\mathrm{p}$-rank strata of the moduli space of curves;Achter;Int. Math. Res. Not. IMRN,2008

3. The $p$-rank strata of the moduli space of hyperelliptic curves;Achter;Adv. Math.,2011

4. Néron Models

5. The $\mathrm{p}$-rank of ramified covers of curves;Bouw,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3