Abstract
AbstractWe study the p-rank stratification of the moduli space of cyclic degree
$\ell $
covers of the projective line in characteristic p for distinct primes p and
$\ell $
. The main result is about the intersection of the p-rank
$0$
stratum with the boundary of the moduli space of curves. When
$\ell =3$
and
$p \equiv 2 \bmod 3$
is an odd prime, we prove that there exists a smooth trielliptic curve in characteristic p, for every genus g, signature type
$(r,s)$
, and p-rank f satisfying the clear necessary conditions.
Publisher
Cambridge University Press (CUP)