A Characterization of Linearizability for Holomorphic ℂ*-Actions

Author:

Kutzschebauch Frank1,Schwarz Gerald W2

Affiliation:

1. Institute of Mathematics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

2. Department of Mathematics, Brandeis University, Waltham, MA 02454-9110, USA

Abstract

Abstract Let $G$ be a reductive complex Lie group acting holomorphically on $X=\mathbb{C}^n$. The (holomorphic) Linearization Problem asks if there is a holomorphic change of coordinates on $\mathbb{C}^n$ such that the $G$-action becomes linear. Equivalently, is there a $G$-equivariant biholomorphism $\Phi \colon X\to V$ where $V$ is a $G$-module? There is an intrinsic stratification of the categorical quotient $X/\!\!/G$, called the Luna stratification, where the strata are labeled by isomorphism classes of representations of reductive subgroups of $G$. Suppose that there is a $\Phi $ as above. Then $\Phi $ induces a biholomorphism ${\varphi }\colon X/\!\!/G\to V/\!\!/G$ that is stratified, that is, the stratum of $X/\!\!/G$ with a given label is sent isomorphically to the stratum of $V/\!\!/G$ with the same label. The counterexamples to the Linearization Problem construct an action of $G$ such that $X/\!\!/G$ is not stratified biholomorphic to any $V/\!\!/G$. Our main theorem shows that, for a reductive group $G$ with $\dim G\leq 1$, the existence of a stratified biholomorphism of $X/\!\!/G$ to some $V/\!\!/G$ is not only necessary but also sufficient for linearization. In fact, we do not have to assume that $X$ is biholomorphic to $\mathbb{C}^n$, only that $X$ is a Stein manifold.

Funder

Schweizerischer Nationalfonds

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference22 articles.

1. Nonlinearizable holomorphic group actions;Derksen;Math. Ann.,1998

2. An equivariant version of Grauert’s Oka principle;Heinzner;Invent. Math.,1995

3. Symplectic quotients have symplectic singularities;Herbig;Compos. Math.,2020

4. Actions of Groups of Holomorphic Transformations;Huckleberry,1990

5. On the holomorphic linearization and equivariant Serre problem;Jiang,1992

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equivariant Oka theory: survey of recent progress;Complex Analysis and its Synergies;2022-08-24

2. The First Thirty Years of Andersén-Lempert Theory;Analysis Mathematica;2022-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3