Author:
Kutzschebauch Frank,Lárusson Finnur,Schwarz Gerald W.
Abstract
AbstractWe survey recent work, published since 2015, on equivariant Oka theory. The main results described in the survey are as follows. Homotopy principles for equivariant isomorphisms of Stein manifolds on which a reductive complex Lie group G acts. Applications to the linearisation problem. A parametric Oka principle for sections of a bundle E of homogeneous spaces for a group bundle $${{\mathscr {G}}}$$
G
, all over a reduced Stein space X with compatible actions of a reductive complex group on E, $${{\mathscr {G}}}$$
G
, and X. Application to the classification of generalised principal bundles with a group action. Finally, an equivariant version of Gromov’s Oka principle based on a notion of a G-manifold being G-Oka.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference36 articles.
1. Aspects of Mathematics, E27;DN Akhiezer,1995
2. Cartan, H.: Espaces fibrés analytiques. In: Symposium internacional de topología algebraica, pp. 97–121. Universidad Nacional Autónoma de México and UNESCO, Mexico City (1958)
3. Derksen, H., Kutzschebauch, F.: Nonlinearizable holomorphic group actions. Math. Ann. 311(1), 41–53 (1998)
4. Forster, O., Ramspott, K.J.: Okasche Paare von Garben nicht-abelscher Gruppen. Invent. Math. 1, 260–286 (1966)
5. Forstnerič, F.: The Oka principle for multivalued sections of ramified mappings. Forum Math. 15(2), 309–328 (2003)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Minimal surfaces with symmetries;Proceedings of the London Mathematical Society;2024-03
2. Recent developments on Oka manifolds;Indagationes Mathematicae;2023-03