The First Integral Cohomology of Pure Mapping Class Groups

Author:

Aramayona Javier1,Patel Priyam2,Vlamis Nicholas G3

Affiliation:

1. Departmento de Matemáticas, Universidad Autónoma de Madrid & Instituto de Ciencias Matemáticas, CSIC Madrid, Spain

2. Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

3. Department of Mathematics, CUNY Queens College Flushing, NY 11367, USA

Abstract

Abstract It is a classical result that pure mapping class groups of connected, orientable surfaces of finite type and genus at least 3 are perfect. In stark contrast, we construct nontrivial homomorphisms from infinite-genus mapping class groups to the integers. Moreover, we compute the first integral cohomology group associated to the pure mapping class group of any connected orientable surface of genus at least 2 in terms of the surface’s simplicial homology. In order to do this, we show that pure mapping class groups of infinite-genus surfaces split as a semi-direct product.

Funder

U.S. National Science Foundation

NSF

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference26 articles.

1. Arc and curve graphs for infinite-type surfaces;Aramayona;Proc. Amer. Math. Soc,2017

2. Homomorphisms between mapping class groups;Aramayona;Geom. Topol.,2012

3. Big mapping class groups: an overview;Aramayona,2020

4. Hyperbolicité du graphe des rayons et quasi-morphismes sur un gros groupe modulaire;Bavard;Geom. Topol,2016

5. Isomorphisms between big mapping class groups;Bavard;Int. Math. Res. Not.,2020

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Homeomorphism groups of 2‐manifolds with the virtual Rokhlin property;Journal of Topology;2024-07-29

2. Isomorphisms and commensurability of surface Houghton groups;Journal of Group Theory;2024-03-21

3. Big mapping class groups with uncountable integral homology;Documenta Mathematica;2024-02-14

4. Surface Houghton groups;Mathematische Annalen;2023-11-08

5. Mapping class groups of surfaces with noncompact boundary components;Algebraic & Geometric Topology;2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3