Surface Houghton groups

Author:

Aramayona Javier,Bux Kai-Uwe,Kim Heejoung,Leininger Christopher J.

Abstract

AbstractFor every $$n\ge 2$$ n 2 , the surface Houghton group$${\mathcal {B}}_n$$ B n is defined as the asymptotically rigid mapping class group of a surface with exactly n ends, all of them non-planar. The groups $${\mathcal {B}}_n$$ B n are analogous to, and in fact contain, the braided Houghton groups. These groups also arise naturally in topology: every monodromy homeomorphism of a fibered component of a depth-1 foliation of closed 3-manifold is conjugate into some $${\mathcal {B}}_n$$ B n . As countable mapping class groups of infinite type surfaces, the groups $$\mathcal {B}_n$$ B n lie somewhere between classical mapping class groups and big mapping class groups. We initiate the study of surface Houghton groups proving, among other things, that $$\mathcal {B}_n$$ B n is of type $$\text {F}_{n-1}$$ F n - 1 , but not of type $$\text {FP}_{n}$$ FP n , analogous to the braided Houghton groups.

Funder

Universität Bielefeld

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference27 articles.

1. Aramayona, J., Bux, K.U., Flechsig, J., Petrosyan, N., Wu, X.: Asymptotic mapping class groups of Cantor manifolds and their finiteness properties. Preprint arXiv:2110.05318 (2021)

2. Aramayona, J., Funar, L.: Asymptotic mapping class groups of closed surfaces punctured along Cantor sets. Moscow Math. J. 21, 1 (2021)

3. Aramayona, J., Patel, P., Vlamis, N.G.: The first integral cohomology of pure mapping class groups. IMRN 2020(22), 8973–8996 (2020)

4. Bestvina, M., Brady, N.: Morse theory and finiteness properties of groups. Invent. Math. 129(3), 445–470 (1997)

5. Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3