Dynamical Systems Around the Rauzy Gasket and Their Ergodic Properties

Author:

Dynnikov Ivan1,Hubert Pascal2,Skripchenko Alexandra34

Affiliation:

1. Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina Str., 119991 Moscow, Russia

2. Aix-Marseille Université, CNRS, Institut de Mathématiques de Marseille-UMR 7373

3. Faculty of Mathematics, National Research University Higher School of Economics, Usacheva St. 6, 119048 Moscow, Russia

4. Skolkovo Institute for Science and Technology, Skolkovo Innovation Center, 143026 Moscow, Russia

Abstract

Abstract At the beginning of the 80s, H. Masur and W. Veech started the study of generic properties of interval exchange transformations (IETs) proving that almost every such transformation is uniquely ergodic. About the same time, S. Novikov’s school and French mathematicians independently discovered very intriguing phenomena for classes of measured foliations on surfaces and respective IETs. For instance, minimality is exceptional in these families. A precise version of this statement is a conjecture by Novikov. The French and Russian constructions are very different ones. Nevertheless, in the most simple situation (surfaces of genus three with two singularities) it was recently observed that both foliations share the same type of properties. For instance, the space of minimal parameters is the same, called the Rauzy gasket. However, the precise connection between these two series of works was rather unclear. The aim of this paper is to prove that both theories describe, in different languages, the same objects. This text provides an explicit dictionary between both constructions.

Funder

Russian Foundation for Basic Research and Centre National de la Recherche Scientifique

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference43 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An upper bound on the dimension of the Rauzy gasket;Bulletin de la Société mathématique de France;2024-02-21

2. An elementary proof that the Rauzy gasket is fractal;Ergodic Theory and Dynamical Systems;2023-09-25

3. Renormalization in one-dimensional dynamics;Russian Mathematical Surveys;2023

4. Ренормализация в одномерной динамике;Uspekhi Matematicheskikh Nauk;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3