The Arithmetic of Tame Quotient Singularities in Dimension2

Author:

Bresciani Giulio1

Affiliation:

1. Scuola Normale Superiore , Piazza dei Cavalieri 7, 56126 Pisa, Italy

Abstract

AbstractLet $k$ be a field, $X$ a variety with tame quotient singularities, and $\tilde {X}\to X$ a resolution of singularities. Any smooth rational point $x\in X(k)$ lifts to $\tilde {X}$ by the Lang–Nishimura theorem, but if $x$ is singular this might be false. For certain types of singularities, the rational point is guaranteed to lift, though; these are called singularities of type $\textrm {R}$. This concept has applications in the study of the fields of moduli of varieties and yields an enhanced version of the Lang–Nishimura theorem where the smoothness assumption is relaxed. We classify completely the tame quotient singularities of type $\textrm {R}$ in dimension $2$; in particular, we show that every non-cyclic tame quotient singularity in dimension $2$ is of type $\textrm {R}$, and most cyclic singularities are of type $\textrm {R}$ too.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference17 articles.

1. Gromov–Witten theory of Deligne–Mumford stacks;Abramovich;Amer. J. Math.,2008

2. Ergebnisse der Mathematik und ihrer Grenzgebiete (3);Bochnak,1998

3. The field of moduli of a divisor on a rational curve;Bresciani,2023

4. The field of moduli of a variety with a structure;Bresciani,2023

5. The field of moduli of plane curves;Bresciani,2023

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The field of moduli of sets of points in $$\mathbb {P}^{2}$$;Archiv der Mathematik;2024-04-09

2. Fields of moduli and the arithmetic of tame quotient singularities;Compositio Mathematica;2024-03-27

3. The field of moduli of varieties with a structure;Bollettino dell'Unione Matematica Italiana;2023-11-27

4. An arithmetic valuative criterion for proper maps of tame algebraic stacks;manuscripta mathematica;2023-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3