The field of moduli of varieties with a structure

Author:

Bresciani GiulioORCID

Abstract

AbstractIf X is a variety with an additional structure $$\xi $$ ξ , such as a marked point, a divisor, a polarization, a group structure and so forth, then it is possible to study whether the pair $$(X,\xi )$$ ( X , ξ ) is defined over the field of moduli. There exists a precise definition of “algebraic structures” which covers essentially all of the obvious concrete examples. We prove several formal results about algebraic structures. There are immediate applications to the study of fields of moduli of curves and finite sets in $$\mathbb {P}^{2}$$ P 2 , but the results are completely general. Fix G a finite group of automorphisms of X, a G-structure is an algebraic structure with automorphism group equal to G. First, we prove that G-structures on X are in a 1 : 1 correspondence with twisted forms of $$X/G\dashrightarrow \mathscr {B}G$$ X / G B G . Secondly we show that, under some assumptions, every algebraic structure on X is equivalent to the structure given by some 0-cycle. Third, we give a cohomological criterion for checking the existence of G-structures not defined over the field of moduli. Fourth, we identify geometric conditions about the action of G on X which ensure that every G-structure is defined over the field of moduli.

Funder

Scuola Normale Superiore

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference19 articles.

1. Bresciani, G.: The field of moduli of a divisor on a rational curve, arxiv:2211.03438 (2022)

2. Bresciani, G.: The arithmetic of tame quotient singularities in dimension 2, Int. Math. Res. Not. (2023). https://academic.oup.com/imrn/advance-article/doi/10.1093/imrn/rnad079/7142915

3. Bresciani, G.: The field of moduli of plane curves, arxiv:2303.01454 (2023)

4. Bresciani, G.: The field of moduli of sets of points in $${\mathbb{P}}^{2}$$, arxiv:2303.01408 (2023)

5. Bresciani, G.: Real versus complex plane curves, arxiv:2309.12192 (2023)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3