On C0-Continuity of the Spectral Norm for Symplectically Non-Aspherical Manifolds

Author:

Kawamoto Yusuke1

Affiliation:

1. Département de Mathématiques et Applications, École Normale Supérieure, 45 rue d’Ulm, F-75230, Paris cedex 05, France

Abstract

Abstract The purpose of this paper is to study the relation between the $C^0$-topology and the topology induced by the spectral norm on the group of Hamiltonian diffeomorphisms of a closed symplectic manifold. Following the approach of Buhovsky–Humilière–Seyfaddini, we prove the $C^0$-continuity of the spectral norm for complex projective spaces and negative monotone symplectic manifolds. The case of complex projective spaces provides an alternative approach to the $C^0$-continuity of the spectral norm proven by Shelukhin. We also prove a partial $C^0$-continuity of the spectral norm for rational symplectic manifolds. Some applications such as the Arnold conjecture in the context of $C^0$-symplectic topology are also discussed.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference31 articles.

1. A ${\mathrm{C}}^0$-counterexample to the Arnold conjecture;Buhovsky;Invent. Math.,2018

2. The action spectrum and ${\mathrm{C}}^0$-symplectic topology;Buhovsky,2021

3. Calabi quasimorphism and quantum homology;Entov;Internat. Math. Res. Notices,2003

4. Rigid subsets of symplectic manifolds;Entov;Compositio Math.,2009

5. Symplectic fixed points and holomorphic spheres;Floer;Comm. Math. Phys.,1989

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Completeness of derived interleaving distances and sheaf quantization of non-smooth objects;Mathematische Annalen;2024-03-13

2. Proof of the simplicity conjecture;Annals of Mathematics;2024-01-01

3. The strong closing lemma and Hamiltonian pseudo-rotations;Journal of Modern Dynamics;2024

4. Hofer geometry via toric degeneration;Mathematische Annalen;2023-12-14

5. Hamiltonian no-torsion;Geometry & Topology;2023-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3