Hofer geometry via toric degeneration

Author:

Kawamoto YusukeORCID

Abstract

AbstractThe main theme of this paper is to use toric degeneration to study Hofer geometry by producing distinct homogeneous quasimorphisms on the group of Hamiltonian diffeomorphisms. We focus on the (complex n-dimensional) quadric hypersurface and the del Pezzo surfaces, and study two classes of distinguished Lagrangian submanifolds that appear naturally in a toric degeneration, namely the Lagrangian torus which is the monotone fiber of a Lagrangian torus fibration, and the Lagrangian spheres that appear as vanishing cycles. For the quadrics, we prove that the group of Hamiltonian diffeomorphisms admits two distinct homogeneous quasimorphisms and derive some superheaviness results. Along the way, we show that the toric degeneration is compatible with the Biran decomposition. This implies that for $$n=2$$ n = 2 , the Lagrangian fiber torus (Gelfand–Zeitlin torus) is Hamiltonian isotopic to the Chekanov torus, which answers a question of Y. Kim. We prove analogous results for the del Pezzo surfaces. We also discuss applications to $$C^0$$ C 0 symplectic topology.

Funder

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference51 articles.

1. Abrams, L.: The quantum Euler class and the quantum cohomology of the Grassmannians. Isr. J. Math. 117, 335–352 (2000)

2. Albers, P.: On the extrinsic topology of Lagrangian submanifolds, IMRN 2005, 38, 2341–2371. Erratum IMRN 7, 1363–1369 (2010)

3. Auroux, D.: Mirror symmetry and T-duality in the complement of an anticanonical divisor. J. Gökova Geom. Topol., GGT 1, 51–91 (2007)

4. Biran, P.: Lagrangian barriers and symplectic embeddings. Geom. Funct. Anal. 11(3), 407–464 (2001)

5. Biran, P.: Lagrangian non-intersections. Geom. Funct. Anal. 16(2), 279–326 (2006)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Isolated hypersurface singularities, spectral invariants, and quantum cohomology;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3