Billiard Tables with Rotational Symmetry

Author:

Bialy Misha1,Tsodikovich Daniel1

Affiliation:

1. School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Abstract

Abstract We generalize the following simple geometric fact: the only centrally symmetric convex curve of constant width is a circle. Billiard interpretation of the condition of constant width reads: a planar curve has constant width, if and only if, the Birkhoff billiard map inside the planar curve has a rotational invariant curve of $2$-periodic orbits. We generalize this statement to curves that are invariant under a rotation by angle $\frac {2\pi }{k}$, for which the billiard map has a rotational invariant curve of $k$-periodic orbits. Similar result holds true also for outer billiards and symplectic billiards. Finally, we consider Minkowski billiards inside a unit disc of Minkowski (not necessarily symmetric) norm that is invariant under a linear map of order $k\ge 3$. We find a criterion for the existence of an invariant curve of $k$-periodic orbits. As an application, we get rigidity results for all those billiards.

Funder

ISF

DFG

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference20 articles.

1. Introducing symplectic billiards;Albers;Adv. Math.,2018

2. From symplectic measurements to the Mahler conjecture;Artstein-Avidan;Duke Math. J.,2014

3. Convex billiards and a theorem by E. Hopf;Bialy;Math. Z.,1993

4. Self-bäcklund curves in centroaffine geometry and lamé’s equation;Bialy,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3