Author:
Artstein-Avidan Shiri,Karasev Roman,Ostrover Yaron
Reference29 articles.
1. [1] S. Artstein-Avidan, V. Milman, and Y. Ostrover, The M-ellipsoid, symplectic capacities and volume, Comment. Math. Helv. 83 (2008), 359–369.
2. [2] S. Artstein-Avidan and Y. Ostrover, Bounds for Minkowski billiard trajectories in convex bodies, Int. Math. Res. Not. (IMRN) 2012.
3. [3] W. Blaschke, Über affine Geometrie VII: Neue Extremeigenschaften von Ellipse und Ellipsoid, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 69 (1917), 306–318, Ges. Werke 3, 246–258.
4. [4] J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in $\mathbb{R}^{n}$, Invent. Math. 88 (1987), 319–340.
5. [5] K. Cieliebak, H. Hofer, J. Latschev, and F. Schlenk, “Quantitative symplectic geometry” in Dynamics, Ergodic Theory, and Geometry, Math. Sci. Res. Inst. Publ. 54, Cambridge Univ. Press, Cambridge, 2007, 1–44.
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献