Transitive Centralizer and Fibered Partially Hyperbolic Systems

Author:

Damjanović Danijela1,Wilkinson Amie2,Xu Disheng3

Affiliation:

1. Department of Mathematics , Kungliga Tekniska Högskolan, Lindstedtsvägen 25, SE-100 44 Stockholm, Sweden

2. Department of Mathematics , The University of Chicago, Chicago, IL 60637, USA

3. Great Bay University , Songshanhu International Community, Dongguan, Guangdong, China, 523000

Abstract

Abstract We prove several rigidity results about the centralizer of a smooth diffeomorphism, concentrating on two families of examples: diffeomorphisms with transitive centralizer, and perturbations of isometric extensions of Anosov diffeomorphisms of nilmanifolds. We classify all smooth diffeomorphisms with transitive centralizer: they are exactly the maps that preserve a principal fiber bundle structure, acting minimally on the fibers and trivially on the base. We also show that for any smooth, accessible isometric extension $f_{0}\colon M\to M$ of an Anosov diffeomorphism of a nilmanifold, subject to a spectral bunching condition, any $f\in \textrm{Diff}^{\infty }(M)$ sufficiently $C^{1}$-close to $f_{0}$ has centralizer a Lie group. If the dimension of this Lie group equals the dimension of the fiber, then $f$ is a principal fiber bundle morphism covering an Anosov diffeomorphism. Using the results of this paper, we classify the centralizer of any partially hyperbolic diffeomorphism of a $3$-dimensional, nontoral nilmanifold: either the centralizer is virtually trivial, or the diffeomorphism is an isometric extension of an Anosov diffeomorphism, and the centralizer is virtually ${{\mathbb{Z}}}\times{{\mathbb{T}}}$.

Publisher

Oxford University Press (OUP)

Reference30 articles.

1. Homeomorphic conjugacy of automorphisms on the torus;Adler;Proc. Amer. Math. Soc.,1965

2. Holonomy invariance: rough regularity and applications to Lyapunov exponents;Avila;Astérisque,2013

3. Partially hyperbolic diffeomorphisms with a uniformly compact center foliation: the quotient dynamics;Bohnet;Ergodic Theory Dynam. Systems,2016

4. The ${C}^1$ generic diffeomorphism has trivial centralizer;Bonatti;Publ. Math. Inst. Hautes Études Sci.,2009

5. Centralizers of partially hyperbolic diffeomorphisms in dimension 3;Barthelmé;Discrete Contin. Dyn. Syst.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3