Author:
BOHNET DORIS,BONATTI CHRISTIAN
Abstract
We show that a partially hyperbolic $C^{1}$-diffeomorphism $f:M\rightarrow M$ with a uniformly compact $f$-invariant center foliation ${\mathcal{F}}^{c}$ is dynamically coherent. Further, the induced homeomorphism $F:M/{\mathcal{F}}^{c}\rightarrow M/{\mathcal{F}}^{c}$ on the quotient space of the center foliation has the shadowing property, i.e. for every ${\it\epsilon}>0$ there exists ${\it\delta}>0$ such that every ${\it\delta}$-pseudo-orbit of center leaves is ${\it\epsilon}$-shadowed by an orbit of center leaves. Although the shadowing orbit is not necessarily unique, we prove the density of periodic center leaves inside the chain recurrent set of the quotient dynamics. Other interesting properties of the quotient dynamics are also discussed.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献