Parabolic Frequency on Manifolds

Author:

Holck Colding Tobias1,Minicozzi II William P1

Affiliation:

1. Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract

Abstract We prove monotonicity of a parabolic frequency on static and evolving manifolds without any curvature or other assumptions. These are parabolic analogs of Almgren’s frequency function. When the static manifold is Euclidean space and the drift operator is the Ornstein–Uhlenbeck operator, this can been seen to imply Poon’s frequency monotonicity for the ordinary heat equation. When the manifold is self-similarly evolving by the Ricci flow, we prove a parabolic frequency monotonicity for solutions of the heat equation. For the self-similarly evolving Gaussian soliton, this gives directly Poon’s monotonicity. Monotonicity of frequency is a parabolic analog of the 19th century Hadamard three-circle theorem about log convexity of holomorphic functions on C. From the monotonicity, we get parabolic unique continuation and backward uniqueness.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference24 articles.

1. Q-valued functions minimizing Dirichlets integral and the regularity of area minimizing rectifiable currents up to codimension two;Almgren, Jr.,1983

2. Asymptotic structure of almost eigenfunctions of drift Laplacians on conical ends;Bernstein;Amer. J. Math.,2020

3. Recent Progress on Ricci Solitons;Cao,2010

4. A strong unique continuation theorem for parabolic equations;Chen;Math. Ann.,1998

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Almost sharp lower bound for the nodal volume of harmonic functions;Communications on Pure and Applied Mathematics;2024-05-29

2. Matrix Li–Yau–Hamilton estimates under Ricci flow and parabolic frequency;Calculus of Variations and Partial Differential Equations;2024-02-26

3. Unique continuation problem on RCD Spaces. I;Geometriae Dedicata;2024-02-15

4. Ancient solutions and translators of Lagrangian mean curvature flow;Publications mathématiques de l'IHÉS;2024-01-15

5. Parabolic Frequency Monotonicity on Ricci Flow and Ricci-Harmonic Flow with Bounded Curvatures;The Journal of Geometric Analysis;2023-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3