Modelling trachoma post-2020: opportunities for mitigating the impact of COVID-19 and accelerating progress towards elimination

Author:

Borlase Anna1,Blumberg Seth2,Callahan E Kelly3,Deiner Michael S2,Nash Scott D3,Porco Travis C2,Solomon Anthony W4,Lietman Thomas M2,Prada Joaquin M5ORCID,Hollingsworth T Dèirdre1

Affiliation:

1. Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK

2. Francis I Proctor Foundation, UCSF, USA

3. Trachoma Control Program, The Carter Center, Atlanta, Georgia, USA

4. Department of Control of Neglected Tropical Diseases, World Health Organisation, Geneva, Switzerland

5. Faculty of Health and Medical Sciences, University of Surrey, UK

Abstract

Abstract Background The COVID-19 pandemic has disrupted planned annual antibiotic mass drug administration (MDA) activities that have formed the cornerstone of the largely successful global efforts to eliminate trachoma as a public health problem. Methods Using a mathematical model we investigate the impact of interruption to MDA in trachoma-endemic settings. We evaluate potential measures to mitigate this impact and consider alternative strategies for accelerating progress in those areas where the trachoma elimination targets may not be achievable otherwise. Results We demonstrate that for districts that were hyperendemic at baseline, or where the trachoma elimination thresholds have not already been achieved after three rounds of MDA, the interruption to planned MDA could lead to a delay to reaching elimination targets greater than the duration of interruption. We also show that an additional round of MDA in the year following MDA resumption could effectively mitigate this delay. For districts where the probability of elimination under annual MDA was already very low, we demonstrate that more intensive MDA schedules are needed to achieve agreed targets. Conclusion Through appropriate use of additional MDA, the impact of COVID-19 in terms of delay to reaching trachoma elimination targets can be effectively mitigated. Additionally, more frequent MDA may accelerate progress towards 2030 goals.

Funder

Bill and Melinda Gates Foundation

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3