Wide Diurnal Temperature Amplitude and High Population Density Can Positively Affect the Life History of Sitobion avenae (Hemiptera: Aphididae)

Author:

Xing Kun123ORCID,Sun Dongbao24,Zhang Jianzhen3,Zhao Fei12

Affiliation:

1. Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Chin

2. Shanxi Shouyang Dryland Agroecosystem, National Observation and Research Station, Shanxi, China

3. Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China

4. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China

Abstract

Abstract Diurnal temperature amplitude is known to have a large influence on insect life history. Population density affects intraspecific competition and many other aspects of insect life history. However, there is limited information on the interactive effects of these factors on insects. Here, we tested the interactive effects of three diurnal temperature amplitudes (22 ± 0°C, 22 ± 6°C, and 22 ± 12°C) and three population densities on the development, survival, longevity, and fecundity of the English grain aphid Sitobion avenae (Fabricius) (Homoptera: Aphididae). At a constant temperature, increasing population density reduced the growth and survival of early-instar nymphs, increased longevity, and reduced fecundity. At a low population density, increasing temperature amplitude inhibited nymph development. However, even at a high temperature amplitude, nymph survival rate was higher than expected, and reproduction was possible because the recovery of the lower night-temperatures eliminated thermal stress. Increasing the population density reduced, and even reversed, the negative effects of the wide temperature amplitude. This may reflect synergistic interactions between population density and wide temperature amplitude as these stressors each incur energetic costs. These findings emphasize the importance of temperature amplitude and population density for improving prediction accuracy and damage assessment during pest control modeling.

Funder

Natural Science Foundation of Shanxi Province

Foundation of Shanxi Academy of Agricultural Sciences

Province Key Research and Development Program of Shanxi

Publisher

Oxford University Press (OUP)

Subject

Insect Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3