A Novel Solid Artificial Diet for Zeugodacus cucurbitae (Diptera: Tephritidae) Larvae With Fitness Parameters Assessed by Two-Sex Life Table

Author:

Liu Xiangrui12,Lin Xianwu13,Li Jing13,Li Fen13,Cao Fengqin13,Yan Rihui13ORCID

Affiliation:

1. Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China

2. College of Ecology and Environment, Hainan University, Haikou, Hainan Province, China

3. College of Plant Protection, Hainan University, Haikou, Hainan Province, China

Abstract

Abstract The melon fly, Zeugodacus cucurbitae (Coquillett), is a serious pest of many fruits and vegetables throughout the world. Here we have developed an easy and quick-to-prepare solid medium with multiple benefits including reductions in post-rearing waste, storage space, and labor for rearing Z. cucurbitae larvae. The development time from egg to pupa was 19.11 d when larvae were reared on the artificial diet, slightly longer than 17.73 d on pumpkin and 17.13 d on cucumber. Zeugodacus cucurbitae achieved higher values of pupal weight, length, and width on the artificial diet than two natural diet controls. The rates of pupation and adult emergence of Z. cucurbitae grown on the solid medium were comparable with those on pumpkin and cucumber. Furthermore, determined by age-specific two-sex life table method, the age-specific survival rate of Z. cucurbitae was higher on the artificial diet than cucumber but lower than pumpkin. The reproductive ability and population dynamics of Z. cucurbitae were not significantly affected on the solid medium compared with those on the two natural diets. The results suggest that our solid artificial diet is excellent for rearing Z. cucurbitae larvae in laboratory and may be used for its mass rearing, therefore facilitating its research and control.

Funder

Science and Technology Department of Hainan Province

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Insect Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3