Combination of MexAB-OprM overexpression and mutations in efflux regulators, PBPs and chaperone proteins is responsible for ceftazidime/avibactam resistance in Pseudomonas aeruginosa clinical isolates from US hospitals

Author:

Castanheira Mariana1,Doyle Timothy B1,Smith Caitlin J1,Mendes Rodrigo E1,Sader Helio S1

Affiliation:

1. JMI Laboratories, North Liberty, IA, USA

Abstract

Abstract Objectives To evaluate ceftazidime/avibactam resistance mechanisms among Pseudomonas aeruginosa clinical isolates and compare with isolates susceptible to this combination. Methods During 2015, 2548 P. aeruginosa isolates were collected in 106 US hospitals and 46 (1.8%) were resistant to ceftazidime/avibactam. These isolates were matched with 109 ceftazidime/avibactam-susceptible isolates resistant to other antipseudomonal agents and were evaluated for the presence of β-lactam resistance mechanisms using WGS analysis and quantitative real-time PCR. Results were analysed using logistic regression comparing the isolate groups to understand the mechanisms of ceftazidime/avibactam resistance. Results Two isolates carried the MBLs blaVIM-1 and blaVIM-2 and another three had unique alterations or deletions in the chromosomal AmpC Ω-loop associated with ceftazidime/avibactam resistance. Overexpression of mexA (+27.4%), disruptions in ampP (+21.7%), mexR (+17.1%) and mexZ (+14.6%) and alterations in ctpA (+13.0%), dnaK (+17.8%) and ftsI (+20.8%) were significantly more prevalent among ceftazidime/avibactam-resistant isolates when compared with their susceptible counterparts independently or in combination. The combination of dnaK alterations and mexA overexpression was more common among ceftazidime/avibactam-resistant by 82×; mexR disruptions and mexA overexpression by 45×; and other two- or three-genotype interactions that included alterations/disruptions in dnaK, ftsI, nalD, mexR, mexZ and mexA overexpression by 6.5× to 34×. Conclusions Resistance to ceftazidime/avibactam among P. aeruginosa clinical isolates has been shown to be a complex interplay of resistance mechanisms that can affect ceftazidime and/or avibactam and some similar findings were reported in laboratory isolates exposed to ceftazidime ± avibactam.

Funder

JMI Laboratories

Allergan

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3