Abstract
AbstractThe emergence and spread of bacteria resistant to commonly used antibiotics poses a critical threat to modern medical practice. Multiple classes of bacterial efflux pump systems play various roles in antibiotic resistance, and members of the resistance-nodulation-division (RND) transporter superfamily are among the most important determinants of efflux-mediated resistance in gram-negative bacteria. RND pumps demonstrate broad substrate specificities, facilitating extrusion of multiple chemical classes of antibiotics from the bacterial cell. Several newer beta-lactams and beta-lactam/beta-lactamase inhibitor combinations (BL/BLI) have been developed to treat infections caused by multidrug resistant bacteria. Here we review recent studies that suggest RND efflux pumps in clinically relevant gram-negative bacteria may play critical but underappreciated roles in the development of resistance to beta-lactams and novel BL/BLI combinations. Improved understanding of the genetic and structural basis of RND efflux pump-mediated resistance may identify new antibiotic targets as well as strategies to minimize the emergence of resistance.
Funder
Division of Intramural Research, National Institute of Allergy and Infectious Diseases
Publisher
Springer Science and Business Media LLC