Time-Series Single-Cell RNA-Seq Data Reveal Auxin Fluctuation during Endocycle

Author:

Torii Kotaro12,Kubota Akane2,Araki Takashi1ORCID,Endo Motomu2

Affiliation:

1. Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8501 Japan

2. Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan

Abstract

Abstract Appropriate cell cycle regulation is crucial for achieving coordinated development and cell differentiation in multicellular organisms. In Arabidopsis, endoreduplication is often observed in terminally differentiated cells and several reports have shown its molecular mechanisms. Auxin is a key factor for the mode transition from mitotic cell cycle to endocycle; however, it remains unclear if and how auxin maintains the endocycle mode. In this study, we reanalyzed root single-cell transcriptome data and reconstructed cell cycle trajectories of the mitotic cell cycle and endocycle. With progression of the endocycle, genes involved in auxin synthesis, influx and efflux were induced at the specific cell phase, suggesting that auxin concentration fluctuated dynamically. Such induction of auxin-related genes was not observed in the mitotic cell cycle, suggesting that the auxin fluctuation plays some roles in maintaining the endocycle stage. In addition, the expression level of CYCB1;1, which is required for cell division in the M phase, coincided with the expected amount of auxin and cell division. Our analysis also provided a set of genes expressed in specific phases of the cell cycle. Taking these findings together, reconstruction of single-cell transcriptome data enables us to identify properties of the cell cycle more accurately.

Funder

Japan Science and Technology Agency PRESTO

KAKENHI

LOTTE Foundation, Daiichi Sankyo Foundation of Life Science

Takeda Science Foundation

SEI Group CSR Foundation

SECOM Science and Technology Foundation

Tokyo Kasei Chemical Promotion foundation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3