Intergenic Spacer Single Nucleotide Polymorphisms for Genotyping Amylostereum areolatum (Russulales: Amylostereacea) Symbionts of Native and Non-native Sirex Species

Author:

Olatinwo Rabiu O1ORCID,Schowalter Timothy D2,Doucet Daniel3,Bowman Susan3,Johnson Wood C4,Allison Jeremy D3

Affiliation:

1. USDA, Forest Service, SRS, Pineville, LA

2. Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA

3. Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada

4. USDA, Forest Service, R8-FHP, Pineville, LA

Abstract

Abstract In North America Amylostereum areolatum (Chaillet ex Fr.) Boidin is a fungal symbiont associated with both the non-native Sirex noctilio Fabricius (Hymenoptera: Siricidae) and less commonly the native Sirex nigricornis Fabricius (Hymenoptera: Siricidae) woodwasps. The relationship between S. noctilio and A. areolatum constitutes a serious threat to pine plantation in the southern hemisphere. Studies have shown evidence of exchange of symbionts between non-native and native Sirex species. Our objectives were 1) to identify and assemble a panel of rDNA intergenic spacer–single nucleotide polymorphisms (IGS-SNPs) for genotyping strains of A. areolatum symbionts associated with Sirex species in North America, and 2) to develop genetic markers for monitoring the spread of specific A. areolatum haplotypes associated with S. noctilio across regions. The IGS-SNPs panel analyzed included haplotypes B1, B2, D1, D2 (from known IGS type B and D), E, and F. Genetic markers and haplotype-specific primers were designed to detect the IGS haplotypes D and E of A. areolatum. We found that haplotype D was absent in A. areolatum from S. nigricornis in Louisiana, while haplotype E was detected in all A. areolatum from S. nigricornis in Canada and Louisiana. Both haplotype D and E were co-detected in approximately 5% of samples from Canada. The IGS-SNP markers detected specific haplotypes accurately. Observing haplotype D in any A. areolatum from the native S. nigricornis likely indicates the presence of the potentially harmful S. noctilo-A. areolatum complex. The work highlights how IGS-SNPs can help in early detection without direct occurrence/observations of the non-native species of concern.

Funder

USDA, Forest Service, Southern Research Station

USDA Forest Service – Forest Health Protection

Canadian Forest Service

Publisher

Oxford University Press (OUP)

Subject

Insect Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3