Abstract
Sirex noctilio along with its mutualistic fungal symbiont, Amylostereum areolatum (a white rot fungus), is an invasive pest that causes excessive damage to Pinus plantations in Northeast China. In 2015, S. noctilio were found to attack Pinus sylvestris var. mongolica, and often share larval habitat with the native woodwasp, S. nitobei. The objective of this study was to determine the possible origin(s) of the introduced pest complex in China and analyse the genetic diversity between A. areolatum isolated from invasive S. noctilio, native S. nitobei and other woodwasps collected from Europe (native range) and other countries. Phylogenetic analyses were performed using the intergenic spacer (IGS) dataset and the combined 4-locus dataset (the internal transcribed spacer region (ITS), translation elongation factor alpha 1 (tef1), DNA-directed ribosomal polymerase II (RPB2), and mitochondrial small subunit (mtSSU)) of three Amylostereum taxa. The multilocus genotyping of nuclear ribosomal regions and protein coding genes revealed at least three distinct multilocus genotypes (MLGs) of the fungus associated with invasive S. noctilio populations in Northeast China, which may have come from North America or Europe. The IGS region of A. areolatum carried by S. noctilio from China was designated type B1D2. Our results showed a lack of fidelity (the paradigm of obligate fidelity to a single fungus per wasp species) between woodwasp hosts and A. areolatum. We found that the native S. nitobei predominantly carried A. areolatum IGS-D2, but a low percentage of females instead carried A. areolatum IGS-B1D2 (MLG A13), which was presumably due to horizontal transmission from S. noctilio, during the sequential use of the same wood for larval development. The precise identification of the A. areolatum genotypes provides valuable insight into co-evolution between Siricidae and their symbionts, as well as understanding of the geographical origin and history of both Sirex species and their associated fungi.
Subject
Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献