Resource Sharing between the Invasive Sirex noctilio and Native Woodborers and Beetles in Pinus Plantations

Author:

Wang Ming123ORCID,Gao Chenglong134,Fu Ningning135ORCID,Ren Lili13ORCID,Luo Youqing13ORCID

Affiliation:

1. Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China

2. Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China

3. Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, INRAE-Beijing Forestry University, Beijing 100083, China

4. Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China

5. Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding 071033, China

Abstract

Sirex noctilio, a European woodwasp, occasionally shares resources with the native S. nitobei and other colonizers in northeast China. The impact of its coexistence on individual species remains unclear. Random sampling was conducted to assess the patterns and extent of insect co-colonization across various spatial scales. Additionally, we analyzed wood sections to determine the density, adult size, and distribution of the two Sirex species. Spatial scales revealed negative associations (Asemum striatum and Phaenops sp.) and neutral ones (Ips acuminatus) between woodwasps and other co-colonizers. Clustering of woodwasps and Phaenops sp. occurred at a small scale (0–7.3 m). Regression analysis showed a positive correlation between the chance of woodwasp attacks and past attacks on the same host, with little impact from other colonization factors. The distribution and body size of S. noctilio within the tree appeared unaffected by S. nitobei’s presence. In the presence of S. noctilio, S. nitobei tended to lay eggs in damaged sections. At the stand level, the overall impact of S. noctilio on S. nitobei population density is likely positive because S. nitobei prefer weaker trees, a preference potentially influenced by initial attacks from S. noctilio on healthier hosts.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3