Fermentation of araticum, baru, and pequi by-products by probiotic strains: effects on microorganisms, short-chain fatty acids, and bioactive compounds

Author:

de Oliveira Fellipe Lopes1,Morzelle Maressa Caldeira1,Moretti Marcia Maria de Souza2,Casarotti Sabrina Neves3ORCID

Affiliation:

1. Federal University of Mato Grosso—UFMT, Department of Food and Nutrition, Faculty of Nutrition , Cuiabá, MT 78060-900 , Brazil

2. São Paulo State University—UNESP, Department of Food Engineering and Technology , São José do Rio Preto, SP 15054-000 , Brazil

3. Federal University of Rondonópolis—UFR, Faculty of Health Sciences , Rondonópolis, MT 78736-900 , Brazil

Abstract

Abstract Fruit by-products, due to their unique chemical composition containing dietary fibers and bioactive compounds, may favor the growth of probiotic strains. This study evaluated the fermentation of araticum, baru, and pequi by-products using Lactobacillus acidophilus (La-5, LA3, and NCFM) and Bifidobacterium animalis subsp. lactis (Bb-12) probiotic strains. We assessed probiotic viability, short-chain fatty acid levels, and bioactive compound levels after 48 h of fermentation. Araticum and pequi by-products led to counts higher than 6 log CFU/mL after 48-h fermentation for all Lactobacillus strains, but only the araticum by-product supported the growth of the Bb-12 strain. Fermentation of araticum by-product resulted in greater amounts of acetate (39.97 mM for LA3 and 39.08 mM for NCFM) and propionate (0.20 mM for NCFM), while baru by-product showed greater amounts of butyrate (0.20 mM for La-5 and Bb-12). Fermentation of araticum and baru by-products resulted in an increase in bioactive compounds, with the latter showing total phenolic compounds and antioxidant activity from 1.4 to 1.7 and from 1.3 to 3.1 times higher, respectively, than the negative control treatment. Araticum by-product exhibited a higher potential for prebiotic effects, and fermentation by the tested probiotic strains is essential to increase bioactive compound levels.

Funder

National Council for Scientific and Technological Development

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3