On the mechanisms of warming the mid-Pliocene and the inference of a hierarchy of climate sensitivities with relevance to the understanding of climate futures

Author:

Chandan DeepakORCID,Peltier W. RichardORCID

Abstract

Abstract. We present results from our investigation into the physical mechanisms through which the mid-Pliocene, with a pCO2 of only  ∼  400 ppmv, could have supported the same magnitude of global warmth as has been projected for the climate at the end of the 21st century when pCO2 is expected to be 3 times higher. These mechanisms allow us to understand the warming in terms of changes to the radiative properties of the surface, the clouds, greenhouse gases, and changes to the meridional heat transport. We find that two-thirds of the warming pervasive during the mid-Pliocene, compared to the preindustrial, could be attributed to the reduction in the planetary emissivity owing to the higher concentrations of the greenhouse gases CO2 and water vapor, and the remaining one-third to the reduction in planetary albedo. We also find that changes to the orography and the pCO2 are the leading causes of the warming with each contributing in roughly equal parts to a total of 87 % of the warming and changes to the polar ice sheets responsible for the remaining warming. Furthermore, we provide a mid-Pliocene perspective on ongoing efforts to understand the climate system's sensitivity at various timescales and using multiple lines of evidence. The similarities in the boundary conditions between the mid-Pliocene and the present day, together with the globally elevated temperatures, make the mid-Pliocene an ideal paleo time period from which to derive inferences of climate sensitivity and assess the impacts of various timescale-dependent feedback processes. We assess a hierarchy of climate sensitivities of increasing complexity in order to explore the response of the climate over a very large range of timescales. The picture that emerges is as follows: on the short timescale, owing to the influence of fast feedback processes, the climate sensitivity is 3.25 °C per doubling of CO2; sensitivity increases to 4.16 °C per doubling of CO2 on an intermediate timescale as the ice–albedo feedback becomes active, and then sensitivity further increases to 7.0 °C per doubling of CO2 on long timescales due to the feedback from the glacial isostatic adjustment of the Earth's surface in response to the melting of the polar ice sheets. Finally, once the slow feedbacks have stabilized, the sensitivity of the system drops to 3.35 °C per doubling of CO2. Our inference of the intermediate-timescale climate sensitivity suggests that the projected warming by 2300 CE, inferred using Earth system models of intermediate complexity on the basis of an extension to the RCP4.5 emission scenario in which atmospheric pCO2 stabilizes at roughly twice the PI level in year 2150 CE, could be underestimated by  ∼ 1 °C due to the absence of ice-sheet-based feedbacks in those models.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3