A bias-corrected CMIP5 dataset for Africa using the CDF-t method – a contribution to agricultural impact studies
-
Published:2018-03-28
Issue:1
Volume:9
Page:313-338
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Famien Adjoua Moise, Janicot Serge, Ochou Abe Delfin, Vrac Mathieu, Defrance DimitriORCID, Sultan Benjamin, Noël Thomas
Abstract
Abstract. The objective of this paper is to present a new dataset of bias-corrected
CMIP5 global climate model (GCM) daily data over Africa. This dataset was
obtained using the cumulative distribution function transform (CDF-t) method,
a method that has been applied to several regions and contexts but never to
Africa. Here CDF-t has been applied over the period 1950–2099 combining
Historical runs and climate change scenarios for six variables: precipitation,
mean near-surface air temperature, near-surface maximum air temperature,
near-surface minimum air temperature, surface downwelling shortwave
radiation, and wind speed, which are critical variables for agricultural
purposes. WFDEI has been used as the reference dataset to correct the GCMs.
Evaluation of the results over West Africa has been carried out on a list of
priority user-based metrics that were discussed and selected with
stakeholders. It includes simulated yield using a crop model simulating maize
growth. These bias-corrected GCM data have been compared with another
available dataset of bias-corrected GCMs using WATCH Forcing Data as the reference dataset.
The impact of WFD, WFDEI, and also EWEMBI reference datasets has been also
examined in detail. It is shown that CDF-t is very effective at removing the
biases and reducing the high inter-GCM scattering. Differences with other
bias-corrected GCM data are mainly due to the differences among the
reference datasets. This is particularly true for surface downwelling
shortwave radiation, which has a significant impact in terms of simulated
maize yields. Projections of future yields over West Africa are quite
different, depending on the bias-correction method used. However all these
projections show a similar relative decreasing trend over the 21st century.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference34 articles.
1. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars,
A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R.,
Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm,
E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay,
P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a 2. Déqué, M.: Frequency of precipitation and temperature extremes over
France in an anthropogenic scenario: model results and statistical correction
according to observed values, Global Planet. Change, 57, 16–26, 2007. a, b 3. Dutra, E.: Report on the current state-of-the-art Water Resources Reanalysis,
Tech. rep. D.5.1, EartH2Observe, available at: http://earth2observe.eu/files/Public Deliverables/D5.1_Report on the WRR1 tier1.pdf
(last access: March 2018), 2015. a 4. Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski,
L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K.,
Hurtt, G., Mengel, M., Murakami, D.,<span id="page337"/> Ostberg, S., Popp, A., Riva, R., Stevanovic,
M., Suzuki, T., Volkholz, J., Burke, E., Ciais, P., Ebi, K., Eddy, T. D.,
Elliott, J., Galbraith, E., Gosling, S. N., Hattermann, F., Hickler, T., Hinkel,
J., Hof, C., Huber, V., Jägermeyr, J., Krysanova, V., Marcé, R.,
Müller Schmied, H., Mouratiadou, I., Pierson, D., Tittensor, D. P., Vautard,
R., van Vliet, M., Biber, M. F., Betts, R. A., Bodirsky, B. L., Deryng, D.,
Frolking, S., Jones, C. D., Lotze, H. K., Lotze-Campen, H., Sahajpal, R.,
Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts of 1.5 ∘C
global warming – simulation protocol of the Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP2b), Geosci. Model Dev., 10, 4321–4345,
https://doi.org/10.5194/gmd-10-4321-2017, 2017. a 5. Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D., and Piani, C.:
Impact of a statistical bias correction on the projected hydrological changes
obtained from three GCMs and two hydrology models, J. Hydrometeorol., 12, 556–578, 2011. a
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|