A Nonstationary Stochastic Rainfall Generator Conditioned on Global Climate Models for Design Flood Analyses in the Mississippi and Other Large River Basins

Author:

Liu Yuan1ORCID,Wright Daniel B.1ORCID,Lorenz David J.2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering University of Wisconsin‐Madison Madison WI USA

2. Center for Climatic Research University of Wisconsin‐Madison Madison WI USA

Abstract

AbstractExisting stochastic rainfall generators (SRGs) are typically limited to relatively small domains due to spatial stationarity assumptions, hindering their usefulness for flood studies in large basins. This study proposes StormLab, an SRG that simulates precipitation events at 6‐hr and 0.03° resolution in the Mississippi River Basin (MRB). The model focuses on winter and spring storms caused by water vapor transport from the Gulf of Mexico—the key flood‐generating storm type in the basin. The model generates anisotropic spatiotemporal noise fields that replicate local precipitation structures from observed data. The noise is transformed into precipitation through parametric distributions conditioned on large‐scale atmospheric fields from a climate model, reflecting spatial and temporal nonstationarity. StormLab can produce multiple realizations that reflect the uncertainty in fine‐scale precipitation arising from a specific large‐scale atmospheric environment. Model parameters were fitted monthly from December–May, based on storms identified from 1979 to 2021 ERA5 reanalysis data and Analysis of Record for Calibration (AORC) precipitation. StormLab then generated 1,000 synthetic years of precipitation events based on 10 CESM2 ensemble simulations. Empirical return levels of simulated annual maxima agree well with AORC data and show an overall increase in 1‐ to 500‐year events in the future period (2022–2050). To our knowledge, this is the first SRG simulating nonstationary, anisotropic high‐resolution precipitation over continental‐scale river basins, demonstrating the value of conditioning such stochastic models on large‐scale atmospheric variables. StormLab provides a wide range of extreme precipitation scenarios for design floods in the MRB and can be further extended to other large river basins.

Publisher

American Geophysical Union (AGU)

Reference139 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3