Using data assimilation to optimize pedotransfer functions using field-scale in situ soil moisture observations
-
Published:2021-05-10
Issue:5
Volume:25
Page:2445-2458
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Cooper ElizabethORCID, Blyth EleanorORCID, Cooper HollieORCID, Ellis Rich, Pinnington EwanORCID, Dadson Simon J.
Abstract
Abstract. Soil moisture predictions from land surface models are important in hydrological, ecological, and meteorological applications. In recent years, the availability of wide-area soil moisture measurements has increased, but few studies have combined model-based soil moisture predictions with in situ observations beyond the point scale. Here we show that we can markedly improve soil moisture estimates from the Joint UK Land Environment Simulator (JULES) land surface model using field-scale observations and data assimilation techniques. Rather than directly updating soil moisture estimates towards observed values, we optimize constants in the underlying pedotransfer functions, which relate soil texture to JULES soil physics parameters. In this way, we generate a single set of newly calibrated pedotransfer functions based on observations from a number of UK sites with different soil textures. We demonstrate that calibrating a pedotransfer function in this way improves the soil moisture predictions of a land surface model at 16 UK sites, leading to the potential for better flood, drought, and climate projections.
Funder
Natural Environment Research Council
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference43 articles.
1. Antoniou, V., Askquith-Ellis, A., Bagnoli, S., Ball, L., Bennett, E., Blake,
J., Boorman, D., Brooks, M., Clarke, M., Cooper, H., Cowan, N., Cumming, A.,
Doughty, L., Evans, J., Farrand, P., Fry, M., Hewitt, N., Hitt, O., Jenkins,
A., Kral, F., Libre, J., Lord, W., Roberts, C., Morrison, R., Parkes, M.,
Nash, G., Newcomb, J., Rylett, D., Scarlett, P., Singer, A., Stanley, S.,
Swain, O., Thornton, J., Trill, E., Vincent, H., Ward, H., Warwick, A.,
Winterbourn, B., and Wright, G.: COSMOS-UK user guide: users' guide to sites,
instruments and available data (version 2.10), Tech. Rep., Wallingford,
http://nora.nerc.ac.uk/id/eprint/524801/ (last access: 5 August 2020), 2019. a, b, c, d 2. Baatz, R., Bogena, H., Hendricks Franssen, H.-J., Huisman, J., Qu, W.,
Montzka, C., and Vereecken, H.: Calibration of a catchment scale cosmic-ray
probe network: A comparison of three parameterization methods determination of soil
moisture: Measurements and theoretical approaches, J. Hydrol., 516, 231–244,
https://doi.org/10.1016/j.jhydrol.2014.02.026, 2014. a, b 3. Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J., and Kirchner, J. W.:
The Relative Importance of Different Flood-Generating Mechanisms Across
Europe, Water Resour. Res., 55, 4582–4593, https://doi.org/10.1029/2019WR024841,
2019. a 4. Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. a, b, c 5. Bogena, H. R., Huisman, J. A., Baatz, R., Hendricks Franssen, H.-J., and
Vereecken, H.: Accuracy of the cosmic-ray soil water content probe in humid
forest ecosystems: The worst case scenario, Water Resour. Res., 49,
5778–5791, https://doi.org/10.1002/wrcr.20463, 2013. a
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|