Retrieving Soil Physical Properties by Assimilating SMAP Brightness Temperature Observations into the Community Land Model

Author:

Zhao Hong1ORCID,Zeng Yijian1ORCID,Han Xujun2,Su Zhongbo13

Affiliation:

1. Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Hengelosestraat 99, 7514 AE Enschede, The Netherlands

2. Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China

3. Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, School of Water and Environment, Chang’an University, Xi’an 710054, China

Abstract

This paper coupled a unified passive and active microwave observation operator—namely, an enhanced, physically-based, discrete emission-scattering model—with the community land model (CLM) in a data assimilation (DA) system. By implementing the system default local ensemble transform Kalman filter (LETKF) algorithm, the Soil Moisture Active and Passive (SMAP) brightness temperature TBp (p = Horizontal or Vertical polarization) assimilations for only soil property retrieval and both soil properties and soil moisture estimates were investigated with the aid of in situ observations at the Maqu site. The results indicate improved estimates of soil properties of the topmost layer in comparison to measurements, as well as of the profile. Specifically, both assimilations of TBH lead to over a 48% reduction in root mean square errors (RMSEs) for the retrieved clay fraction from the background compared to the top layer measurements. Both assimilations of TBV reduce RMSEs by 36% for the sand fraction and by 28% for the clay fraction. However, the DA estimated soil moisture and land surface fluxes still exhibit discrepancies when compared to the measurements. The retrieved accurate soil properties alone are inadequate to improve those estimates. The discussed uncertainties (e.g., fixed PTF structures) in the CLM model structures should be mitigated.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3