Learning about precipitation lapse rates from snow course data improves water balance modeling

Author:

Avanzi FrancescoORCID,Ercolani Giulia,Gabellani Simone,Cremonese EdoardoORCID,Pogliotti Paolo,Filippa GianlucaORCID,Morra di Cella Umberto,Ratto Sara,Stevenin Hervè,Cauduro Marco,Juglair Stefano

Abstract

Abstract. Precipitation orographic enhancement is the result of both synoptic circulation and topography. Since high-elevation headwaters are often sparsely instrumented, the magnitude and distribution of this enhancement, as well as how they affect precipitation lapse rates, remain poorly understood. Filling this knowledge gap would allow a significant step ahead for hydrologic forecasting procedures and water management in general. Here, we hypothesized that spatially distributed, manual measurements of snow depth (courses) could provide new insights into this process. We leveraged over 11 000 snow course data upstream of two reservoirs in the western European Alps (Aosta Valley, Italy) to estimate precipitation orographic enhancement in the form of lapse rates and, consequently, improve predictions of a snow hydrologic modeling chain (Flood-PROOFS). We found that snow water equivalent (SWE) above 3000 m a.s.l. (above sea level) was between 2 and 8.5 times higher than recorded cumulative seasonal precipitation below 1000 m a.s.l., with gradients up to 1000 mm w.e. km−1. Enhancement factors, estimated by blending precipitation gauge and snow course data, were consistent between the two hydropower headwaters (median values above 3000 m a.s.l. between 4.1 and 4.8). Including blended gauge course lapse rates in an iterative precipitation spatialization procedure allowed Flood-PROOFS to remedy underestimations both of SWE above 3000 m a.s.l. (up to 50 %) and – importantly – of precipitation vs. observed streamflow. Annual runoff coefficients based on blended lapse rates were also more consistent from year to year than those based on precipitation gauges alone (standard deviation of 0.06 and 0.19, respectively). Thus, snow courses bear a characteristic signature of orographic precipitation, which opens a window of opportunity for leveraging these data sets to improve our understanding of the mountain water budget. This is all the more important due to the essential role of high-elevation headwaters in supporting water security and ecosystem services worldwide.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3