A random forest approach to quality-checking automatic snow-depth sensor measurements
-
Published:2023-12-15
Issue:12
Volume:17
Page:5317-5333
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Blandini Giulia, Avanzi FrancescoORCID, Gabellani Simone, Ponziani Denise, Stevenin Hervé, Ratto Sara, Ferraris Luca, Viglione AlbertoORCID
Abstract
Abstract. State-of-the-art snow sensing technologies currently provide an unprecedented amount of data from both remote sensing and ground sensors, but their assimilation into dynamic models is bounded to data quality, which is often low – especially in mountain, high-elevation, and unattended regions where snow is the predominant land-cover feature. To maximize the value of snow-depth measurements, we developed a random forest classifier to automatize the quality assurance and quality control (QA/QC) procedure of near-surface snow-depth measurements collected through ultrasonic sensors, with particular reference to the differentiation of snow cover from grass or bare-ground data and to the detection of random errors (e.g., spikes). The model was trained and validated using a split-sample approach of an already manually classified dataset of 18 years of data from 43 sensors in Aosta Valley (northwestern Italian Alps) and then further validated using 3 years of data from 27 stations across the rest of Italy (with no further training or tuning). The F1 score was used as scoring metric, it being the most suited to describe the performances of a model in the case of a multiclass imbalanced classification problem. The model proved to be both robust and reliable in the classification of snow cover vs. grass/bare ground in Aosta Valley (F1 values above 90 %) yet less reliable in rare random-error detection, mostly due to the dataset imbalance (samples distribution: 46.46 % snow, 49.21 % grass/bare ground, 4.34 % error). No clear correlation with snow-season climatology was found in the training dataset, which further suggests the robustness of our approach. The application across the rest of Italy yielded F1 scores on the order of 90 % for snow and grass/bare ground, thus confirming results from the testing region and corroborating model robustness and reliability, with again a less skillful classification of random errors (values below 5 %). This machine learning algorithm of data quality assessment will provide more reliable snow data, enhancing their use in snow models.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference58 articles.
1. Avanzi, F., De Michele, C., Ghezzi, A., Jommi, C., and Pepe, M.: A processing–modeling routine to use SNOTEL hourly data in snowpack dynamic models, Adv. Water Resour., 73, 16–29, 2014. a, b, c, d, e, f 2. Avanzi, F., Johnson, R. C., Oroza, C. A., Hirashima, H., Maurer, T., and Yamaguchi, S.: Insights into preferential flow snowpack runoff using random forest, Water Resour. Res., 55, 10727–10746, 2019. a 3. Avanzi, F., Zheng, Z., Coogan, A., Rice, R., Akella, R., and Conklin, M. H.: Gap-filling snow-depth time-series with Kalman filtering-smoothing and expectation maximization: Proof of concept using spatially dense wireless-sensor-network data, Cold Reg. Sci. Technol., 175, 103066, https://doi.org/10.1016/j.coldregions.2020.103066, 2020. a, b, c 4. Avanzi, F., Ercolani, G., Gabellani, S., Cremonese, E., Pogliotti, P., Filippa, G., Morra di Cella, U., Ratto, S., Stevenin, H., Cauduro, M., and Juglair, S.: Learning about precipitation lapse rates from snow course data improves water balance modeling, Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021, 2021. a, b, c 5. Avanzi, F., Gabellani, S., Delogu, F., Silvestro, F., Pignone, F., Bruno, G., Pulvirenti, L., Squicciarino, G., Fiori, E., Rossi, L., Puca, S., Toniazzo, A., Giordano, P., Falzacappa, M., Ratto, S., Stevenin, H., Cardillo, A., Fioletti, M., Cazzuli, O., Cremonese, E., Morra di Cella, U., and Ferraris, L.: IT-SNOW: a snow reanalysis for Italy blending modeling, in situ data, and satellite observations (2010–2021), Earth Syst. Sci. Data, 15, 639–660, https://doi.org/10.5194/essd-15-639-2023, 2023. a, b, c, d, e
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|