Abstract
Abstract. Spatial interpolation of rain gauge data is important in forcing of hydrological simulations or evaluation of weather predictions, for example. The spatial density of available data sites is often changing with time. This paper investigates the application of statistical distance, like one minus common variance of time series, between data sites instead of geographical distance in interpolation. Here, as a typical representative of interpolation methods the inverse distance weighting interpolation is applied and the test data is daily precipitation observed in Austria. Choosing statistical distance instead of geographical distance in interpolation of an actually available coarse observation network yields more robust interpolation results at sites of a denser network with actually lacking observations. The performance enhancement is in or close to mountainous terrain. This has the potential to parsimoniously densify the currently available observation network. Additionally, the success further motivates search for conceptual rain-orography interaction models as components of spatial rain interpolation algorithms in mountainous terrain.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献