Comparative Evaluation of the GPM IMERG Early, Late, and Final Hourly Precipitation Products Using the CMPA Data over Sichuan Basin of China

Author:

Tang Shunxian,Li Rui,He Jianxin,Wang Hao,Fan XingangORCID,Yao Shuangyu

Abstract

The Global Precipitation Measurement (GPM) mission has generated global precipitation products of improved accuracy and coverage that are promising for advanced hydrological and meteorological studies. This study evaluates three Integrated Multi-satellitE Retrievals for GPM (IMERG) Hourly products, including the Early-, Late-, and Final-run products (IMERG-HE, IMERG-HL, and IMERG-HF, respectively), over Sichuan Basin of China. This highly complex terrain of the steep mountainous region offers further scrutiny on the quality and applicability of the data. The China Meteorological Precipitation Analysis (CMPA) data from January 2016 to December 2018 are used as the reference for the evaluation. Results show that: (1) At grid scale, IMERG-HL and IMERG-HF outperform IMERG-HE in terms of correlation coefficient (CC) and root-mean-square error (RMSE), but IMERG-HL has smaller relative bias (RB) than that of the IMERG-HF (by 21.16%). IMERG-HF presents the highest probability of detection (POD = 0.52) and critical success index (CSI = 0.32), except for high false alarm ratio (FAR) for light precipitation. (2) At regional scale, IMERG-HF outperforms IMERG-HE and IMERG-HL in annual evaluation in all the metrics except for the serious overestimation as shown in RB (20.18%, 3.84%, and 4.97%, respectively). Its accumulative precipitation deviation mainly comes from moderate precipitation events (1–10 mm/h), while better detection capability is seen in light precipitation (<1 mm/h). Seasonally, IMERG-HF performs the best in winter, while IMERG-HL performs the best in the other seasons. (3) IMERG-HF captures the peak precipitation more accurately in all seasons. In reproducing the diurnal cycle, IMERG-HF performs better in winter, while IMERG-HL performs better in summer and autumn, and IMERG-HE in spring. However, all three products overestimate the early morning precipitation (01:00–08:00 local standard time) of the diurnal cycle in spring, summer, and autumn.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3