The Floodwater Depth Estimation Tool (FwDET v2.0) for improved remote sensing analysis of coastal flooding

Author:

Cohen Sagy,Raney Austin,Munasinghe DinukeORCID,Loftis J. Derek,Molthan Andrew,Bell JordanORCID,Rogers Laura,Galantowicz John,Brakenridge G. Robert,Kettner Albert J.ORCID,Huang Yu-Fen,Tsang Yin-PhanORCID

Abstract

Abstract. Remote sensing analysis is routinely used to map flooding extent either retrospectively or in near-real time. For flood emergency response, remote-sensing-based flood mapping is highly valuable as it can offer continued observational information about the flood extent over large geographical domains. Information about the floodwater depth across the inundated domain is important for damage assessment, rescue, and prioritizing of relief resource allocation, but cannot be readily estimated from remote sensing analysis. The Floodwater Depth Estimation Tool (FwDET) was developed to augment remote sensing analysis by calculating water depth based solely on an inundation map with an associated digital elevation model (DEM). The tool was shown to be accurate and was used in flood response activations by the Global Flood Partnership. Here we present a new version of the tool, FwDET v2.0, which enables water depth estimation for coastal flooding. FwDET v2.0 features a new flood boundary identification scheme which accounts for the lack of confinement of coastal flood domains at the shoreline. A new algorithm is used to calculate the local floodwater elevation for each cell, which improves the tool's runtime by a factor of 15 and alleviates inaccurate local boundary assignment across permanent water bodies. FwDET v2.0 is evaluated against physically based hydrodynamic simulations in both riverine and coastal case studies. The results show good correspondence, with an average difference of 0.18 and 0.31 m for the coastal (using a 1 m DEM) and riverine (using a 10 m DEM) case studies, respectively. A FwDET v2.0 application of using remote-sensing-derived flood maps is presented for three case studies. These case studies showcase FwDET v2.0 ability to efficiently provide a synoptic assessment of floodwater. Limitations include challenges in obtaining high-resolution DEMs and increases in uncertainty when applied for highly fragmented flood inundation domains.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference34 articles.

1. Alfieri, L., Cohen, S., Galantowicz, J., Schumann, G. J., Trigg, M. A., Zsoter, E., Prudhomme, C., Kruczkiewicz, A., de Perez, E. C., Fleming, A., Rudari, R., Wu, H., Adler, F. R., Brackenridge, R. G., Kettner, A., Weerts, A., Matgenu, P., Islam, S., de Groeve, T., and Salamon P.: A global network for operational flood risk reduction, Environ. Sci. Pol., 84, 149–158, 2018.

2. Casulli, V.: Computational grid, subgrid, and pixels, Int. J. Numer. Meth. Fl., 10, 1–16, 2019.

3. Centre for Research on the Epidemiology of Disasters (CRED): The Human Cost of Natural Disasters 2015: A Global Perspective, available at: http://reliefweb.int/report/world/human-cost-natural-disasters-2015-global-perspective(last access: 14 November 2018), 2015.

4. Cohen, S. and Raney, A.: FwDET v2.0, available at: https://sdml.ua.edu/models/, last access: 9 September 2019a.

5. Cohen, S. and Raney, A.: FwDET v2.0, available at: https://csdms.colorado.edu/wiki/Model_download_portal, last access: 9 September 2019b.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3