Integrated Flood Impact and Vulnerability Assessment Using a Multi-Sensor Earth Observation Mission with the Perspective of an Operational Service in Lombardy, Italy

Author:

Righini Margherita1ORCID,Gatti Ignacio1ORCID,Taramelli Andrea12ORCID,Arosio Marcello1ORCID,Valentini Emiliana3,Sapio Serena1ORCID,Schiavon Emma1

Affiliation:

1. Department of Science, Technology and Society, Institute for Advanced Studies of Pavia (IUSS), 27100 Pavia, Italy

2. Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy

3. Institute of Polar Sciences of the Italian National Research Council (ISP CNR), Montelibretti, 00015 Rome, Italy

Abstract

The frequency and the accumulation of medium–small flood events can cause severe impacts. In a climate change context, real-time monitoring and a fast risk assessment are needed to support the post-disaster phases. The present work presents a novel methodology that leverages the potential of earth observation data to produce a proof-of-concept for flood vulnerability assessment, serving as the basis for a Map Operational Service for the Lombardy region. The proof-of-concept is related to both flood hazard estimation and vulnerability assessment, considering the evaluation of the potentialities of the synthetic aperture radar data when used to feed a downstream service. Using the city of Pavia (Italy), which was affected by a flood event in November 2019, as a case study, we present an integrated flood impact approach that includes a combination of social and physical parameters. The results contribute to a processing chain designed as a pre-operational service where each data analytic retrieves thematic products to support the exposure and damage estimates based on earth observation-derived hazard products for emergency and recovery responses. Three different satellites covered more than 40 h of the flood’s evolution, supporting the great potential of the multi-sensor approach. Therefore, different sensor configurations in terms of spectral bands (X and C bands) and resolutions (from 10 to 1 m) provide a near real-time view of the event. Comparing the results obtained through the three hazard scenarios, a final social and physical Integrated Impact Index is obtained. The added value information leads to the determination of hotspots with which to prioritize effective interventions during emergency and recovery phases, crucial for capturing inherent conditions that allow communities to absorb impacts and cope with a damaging flood event.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3