Laboratory and field tests and distinct element analysis of dry granular flows and segregation processes

Author:

Cheng Yung MingORCID,Fung Wing Hong Ivan,Li LiangORCID,Li Na

Abstract

Abstract. Natural as well as fill slopes are commonly found in Hong Kong, China, and many other countries, and slope failures with the subsequent debris flows have caused a serious loss of life and property in the past until now. There are various processes and features associated with debris flow which engineers need to know so as to design for the precautionary measures. In this study, experiments on flume tests, friction tests, deposition tests, and rebound tests were carried out for different sizes of balls to determine the parameters required for the modelling of dry granular flow. Different materials and sizes of balls are used in the flume tests, and various flow pattern and segregation phenomena are noticed in the tests. Distinct element modelling (DEM) of dry granular flow is also carried out for the flow process. It is found that for simple cases, the flow process can be modelled reasonably well by DEM, which is crucial for engineers to determine the pattern and impact of granular flow, which will lead to further study in more complicated debris flow. From laboratory tests, large-scale field tests, and numerical simulations of single- and multiple-material tests, it is also found that the particle size will be the most critical factor in the segregation process during granular flow. It is also found from the laboratory tests and numerical simulations that a jump in the flume can help to reduce the final velocity of the granular flow, which is useful for practical purposes.

Funder

Research Grants Council, University Grants Committee

City University of Hong Kong

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference52 articles.

1. Ashwood, W. and Hungr, O.: Estimating total resisting force in flexible barrier impacted by a granular avalanche using physical and numerical modeling, Can. Geotech. J., 53, 1700–1717, 2016.

2. Berger, C.: A comparison of physical and computer-based debris flow modelling of a deflection structure at Illgraben, Switzerland, Interpraevent, 2016, 212–220, 2016.

3. Chan, C. P. L.: Runout distance of debris flows: experimental and numerical simulations, Doctoral dissertation, The Hong Kong Polytechnic University, 2001.

4. Chen, H. and Lee, C. F.: Numerical simulation of debris flow, Can. Geotech. J., 37, 146–160, 2000.

5. Cheng, Y. M., Liu, H. T., and Au, S. K.: Location of critical three-dimensional non-spherical failure surface with applications to highway slopes, Comput. Geotech., 32, 387–399, 2005.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3