Observation of the process of snow accumulation on the Antarctic Plateau by time lapse laser scanning
-
Published:2019-07-17
Issue:7
Volume:13
Page:1983-1999
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Picard GhislainORCID, Arnaud LaurentORCID, Caneill Romain, Lefebvre Eric, Lamare MaximORCID
Abstract
Abstract. Snow accumulation is the main positive component of the mass balance in Antarctica. In contrast to the major efforts deployed to estimate its overall value on a continental scale – to assess the contribution of the ice sheet to sea level rise – knowledge about the accumulation process itself is relatively poor, although many complex phenomena occur between snowfall and the definitive settling of the snow particles on the snowpack. Here we exploit a dataset of near-daily surface elevation maps recorded over 3 years at Dome C using an automatic laser scanner sampling 40–100 m2 in area. We find that the averaged accumulation is relatively regular over the 3 years at a rate of +8.7 cm yr−1. Despite this overall regularity, the surface changes very frequently (every 3 d on average) due to snow erosion and heterogeneous snow deposition that we call accumulation by “patches”. Most of these patches (60 %–85 %) are ephemeral but can survive a few weeks before being eroded. As a result, the surface is continuously rough (6–8 cm root-mean-square height) featuring meter-scale dunes aligned along the wind and larger, decameter-scale undulations. Additionally, we deduce the age of the snow present at a given time on the surface from elevation time series and find that snow age spans over more than a year. Some of the patches ultimately settle, leading to a heterogeneous internal structure which reflects the surface heterogeneity, with many snowfall events missing at a given point, whilst many others are overrepresented. These findings have important consequences for several research topics including surface mass balance, surface energy budget, photochemistry, snowpack evolution, and the interpretation of the signals archived in ice cores.
Funder
Agence Nationale de la Recherche
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference44 articles.
1. Adodo, F. I., Remy, F., and Picard, G.: Seasonal variations of the backscattering coefficient measured by radar altimeters over the Antarctic Ice Sheet, The Cryosphere, 12, 1767–1778, https://doi.org/10.5194/tc-12-1767-2018, 2018. a 2. Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a, b, c 3. Amory, C., Naaim-Bouvet, F., Gallée, H., and Vignon, E.: Brief communication: Two well-marked cases of aerodynamic adjustment of sastrugi, The Cryosphere, 10, 743–750, https://doi.org/10.5194/tc-10-743-2016, 2016. a 4. Amory, C., Gallée, H., Naaim-Bouvet, F., Favier, V., Vignon, E., Picard,
G., Trouvilliez, A., Piard, L., Genthon, C., and Bellot, H.: Seasonal
Variations in Drag Coefficient over a Sastrugi-Covered Snowfield in Coastal
East Antarctica, Bound.-Lay. Meteorol., 164, 107–133,
https://doi.org/10.1007/s10546-017-0242-5, 2017. a 5. Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow
accumulation mapped using polarization of 4.3-cm wavelength microwave
emission, J. Geophys. Res., 111, D06107,
https://doi.org/10.1029/2004JD005667, 2006. a
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|