Spatial and temporal stable water isotope data from the upper snowpack at the EastGRIP camp site, NE Greenland, sampled in summer 2018
-
Published:2024-04-16
Issue:4
Volume:16
Page:1861-1874
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Zuhr Alexandra M.ORCID, Wahl SonjaORCID, Steen-Larsen Hans ChristianORCID, Hörhold MariaORCID, Meyer HannoORCID, Gkinis VasileiosORCID, Laepple ThomasORCID
Abstract
Abstract. Stable water isotopes stored in snow, firn and ice are used to reconstruct climatic parameters. The imprint of these parameters at the snow surface and their preservation in the upper snowpack are determined by a number of processes influencing the recording of the environmental signal. Here, we present a dataset of approximately 3800 snow samples analysed for their stable water isotope composition, which were obtained during the summer season next to the deep drilling site of the East Greenland Ice Core Project in northeast Greenland (75.635411° N, 36.000250° W). Sampling was carried out every third day between 14 May and 3 August 2018 along a 39 m long transect. Three depth intervals in the top 10 cm were sampled at 30 positions with a higher resolution closer to the surface (0–1 and 1–4 cm depth vs. 4–10 cm). The sample analysis was carried out at two renowned stable water isotope laboratories that produced isotope data with the overall highest uncertainty of 0.09 ‰ for δ18O and 0.8 ‰ for δD. This unique dataset shows the strongest δ18O variability closest to the surface, damped and delayed variations in the lowest layer, and a trend towards increasing homogeneity towards the end of the season, especially in the deepest layer. Additional information on the snow height and its temporal changes suggests a non-uniform spatial imprint of the seasonal climatic information in this area, potentially following the stratigraphic noise of the surface. The data can be used to study the relation between snow height (changes) and the imprint and preservation of the isotopic composition at a site with 10–14 cm w.e. yr−1 accumulation. The high-temporal-resolution sampling allows additional analyses on (post-)depositional processes, such as vapour–snow exchange. The data can be accessed at https://doi.org/10.1594/PANGAEA.956626 (Zuhr et al., 2023a).
Funder
HORIZON EUROPE European Research Council
Publisher
Copernicus GmbH
Reference43 articles.
1. Brook, E. J. and Buizert, C.: Antarctic and global climate history viewed from ice cores, Nature, 558, 200–208, https://doi.org/10.1038/s41586-018-0172-5, 2018. a 2. Casado, M., Landais, A., Picard, G., Münch, T., Laepple, T., Stenni, B., Dreossi, G., Ekaykin, A., Arnaud, L., Genthon, C., Touzeau, A., Masson-Delmotte, V., and Jouzel, J.: Archival processes of the water stable isotope signal in East Antarctic ice cores, The Cryosphere, 12, 1745–1766, https://doi.org/10.5194/tc-12-1745-2018, 2018. a 3. Casado, M., Münch, T., and Laepple, T.: Climatic information archived in ice cores: impact of intermittency and diffusion on the recorded isotopic signal in Antarctica, Clim. Past, 16, 1581–1598, https://doi.org/10.5194/cp-16-1581-2020, 2020. a, b 4. Casado, M., Landais, A., Picard, G., Arnaud, L., Dreossi, G., Stenni, B., and Prié, F.: Water Isotopic Signature of Surface Snow Metamorphism in Antarctica, Geophys. Res. Lett., 48, e2021GL093382, https://doi.org/10.1029/2021GL093382, 2021. a 5. Cauquoin, A. and Werner, M.: High-Resolution Nudged Isotope Modeling With ECHAM6-Wiso: Impacts of Updated Model Physics and ERA5 Reanalysis Data, J. Adv. Model. Earth Sy., 13, e2021MS002532, https://doi.org/10.1029/2021MS002532, 2021. a
|
|