Limited impact of El Niño–Southern Oscillation on variability and growth rate of atmospheric methane
-
Published:2018-10-30
Issue:21
Volume:15
Page:6371-6386
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Schaefer HinrichORCID, Smale DanORCID, Nichol Sylvia E., Bromley Tony M., Brailsford Gordon W., Martin Ross J., Moss Rowena, Englund Michel Sylvia, White James W. C.
Abstract
Abstract. The El Niño–Southern Oscillation (ENSO) has been suggested
as a strong forcing in the methane cycle and as a driver of recent trends in
global atmospheric methane mole fractions [CH4]. Such a sensitivity
of the global CH4 budget to climate events would have important
repercussions for climate change mitigation strategies and the accuracy of
projections for future greenhouse forcing. Here, we test the impact of ENSO
on atmospheric CH4 in a correlation analysis. We use local and
global records of [CH4], as well as stable carbon isotopic records
of atmospheric CH4 (δ13CH4), which are
particularly sensitive to the combined ENSO effects on CH4
production from wetlands and biomass burning. We use a variety of nominal,
smoothed, and detrended time series including growth rate records. We find
that at most 36 % of the variability in [CH4] and
δ13CH4 is attributable to ENSO, but only for detrended
records in the southern tropics. Trend-bearing records from the southern
tropics, as well as all studied hemispheric and global records, show a minor
impact of ENSO, i.e. < 24 % of variability explained. Additional
analyses using hydrogen cyanide (HCN) records show a detectable ENSO
influence on biomass burning (up to 51 %–55 %), suggesting that it
is wetland CH4 production that responds less to ENSO than
previously suggested. Dynamics of the removal by hydroxyl likely counteract
the variation in emissions, but the expected isotope signal is not evident.
It is possible that other processes obscure the ENSO signal, which itself
indicates a minor influence of the latter on global CH4 emissions.
Trends like the recent rise in atmospheric [CH4] can therefore not
be attributed to ENSO. This leaves anthropogenic methane sources as the
likely driver, which must be mitigated to reduce anthropogenic climate
change.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference70 articles.
1. Ashok, K., Behera, S. K., Rao, S. A., Weng, H. Y., and Yamagata, T.: El Nino
Modoki and its possible teleconnection, J. Geophys. Res., 112, C11007,
https://doi.org/10.1029/2006JC003798, 2007. 2. Barnston, A. G., Chelliah, M., and Goldenberg, S. B.: Documentation of a
highly ENSO-related SST region in the equatorial Pacific, Atmos. Ocean, 35,
367–383, 1997. 3. Basso, L. S., Gatti, L. V., Gloor, M., Miller, J. B., Domingues, L. G.,
Correia, C. S. C., and Borges, V. F.: Seasonality and interannual variability
of CH4 fluxes from the eastern Amazon Basin inferred from atmospheric
mole fraction profiles, J. Geophys. Res., 121, 168–184, 2016. 4. Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D.
A., Prigent, C., Van der Werf, G. R., Peylin, P., Brunke, E.-G., Carouge,
C., Langenfelds, R. L., Lathiere, J., Papa, F., Ramonet, M., Schmidt, M.,
Steele, L. P., Tyler, S. C., and White, J.: Contribution of anthropogenic and
natural sources to atmospheric methane variability, Nature, 443,
439–443, 2006. 5. Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E.-G.,
Carouge, C., Chevallier, F., Fortems-Cheiney, A., Frankenberg, C.,
Hauglustaine, D. A., Krummel, P. B., Langenfelds, R. L., Ramonet, M.,
Schmidt, M., Steele, L. P., Szopa, S., Yver, C., Viovy, N., and Ciais, P.:
Source attribution of the changes in atmospheric methane for 2006–2008,
Atmos. Chem. Phys., 11, 3689–3700, https://doi.org/10.5194/acp-11-3689-2011,
2011.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|