Australian Fires 2019–2020: Tropospheric and Stratospheric Pollution Throughout the Whole Fire Season

Author:

Kloss Corinna,Sellitto Pasquale,von Hobe Marc,Berthet Gwenaël,Smale Dan,Krysztofiak Gisèle,Xue Chaoyang,Qiu Chenxi,Jégou Fabrice,Ouerghemmi Inès,Legras Bernard

Abstract

The historically large and severe wildfires in Australia from September 2019 to March 2020 are known to have injected a smoke plume into the stratosphere around New Year, due to pyro-cumulonimbus (pyro-Cb) activity, that was subsequently distributed throughout the Southern Hemisphere (SH). We show with satellite, ground based remote sensing, and in situ observations that the fires before New Year, had already a substantial impact on the SH atmosphere, starting as early as September 2019, with subsequent long-range transport of trace gas plumes in the upper-troposphere. Airborne in situ measurements above Southern Argentina in November 2019 show elevated CO mixing ratios at an altitude of 11 km and can be traced back using FLEXPART trajectories to the Australian fires in mid-November 2019. Ground based solar-FTS (Fourier Transform Spectroscopy) observations of biomass burning tracers CO, HCN and C2H6 at Lauder, South Island, New Zealand show enhanced tropospheric columns already starting in September 2019. In MLS observations averaged over 30°–60°S, enhanced CO mixing ratios compared to previous years become visible in late October 2019 only at and below the 147 hPa pressure level. Peak differences are found with satellite and ground-based observations for all altitude levels in the Southern Hemisphere in January. With still increased aerosol values following the Ulawun eruption in 2019, averaged satellite observations show no clear stratospheric and upper-tropospheric aerosol enhancements from the Australian fires, before the pyro-Cb events at the end of December 2019. However, with the clear enhancement of fire tracers, we suggest the period September to December 2019 (prior to the major pyro-Cb events) should be taken into account in terms of fire pollutant emissions when studying the impact of the Australian fires on the SH atmosphere.

Funder

Agence Nationale de la Recherche

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference44 articles.

1. Unprecedented Burn Area of Australian Mega forest Fires;Boer;Nat. Clim. Chang.,2020

2. Intercontinental Transport of Biomass Burning Pollutants over the Mediterranean basin during the Summer 2014 Charmex-Glam Airborne Campaign;Brocchi;Atmos. Chem. Phys.,2018

3. Photosynthetic Control of Atmospheric Carbonyl Sulfide during the Growing Season;Campbell;Science,2008

4. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission);Cisewski,2014

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3