Vertical dependence of horizontal variation of cloud microphysics: observations from the ACE-ENA field campaign and implications for warm-rain simulation in climate models

Author:

Zhang ZhiboORCID,Song Qianqian,Mechem David B.,Larson Vincent E.,Wang JianORCID,Liu YangangORCID,Witte Mikael K.ORCID,Dong Xiquan,Wu PengORCID

Abstract

Abstract. In the current global climate models (GCMs), the nonlinearity effect of subgrid cloud variations on the parameterization of warm-rain process, e.g., the autoconversion rate, is often treated by multiplying the resolved-scale warm-rain process rates by a so-called enhancement factor (EF). In this study, we investigate the subgrid-scale horizontal variations and covariation of cloud water content (qc) and cloud droplet number concentration (Nc) in marine boundary layer (MBL) clouds based on the in situ measurements from a recent field campaign and study the implications for the autoconversion rate EF in GCMs. Based on a few carefully selected cases from the field campaign, we found that in contrast to the enhancing effect of qc and Nc variations that tends to make EF > 1, the strong positive correlation between qc and Nc results in a suppressing effect that tends to make EF < 1. This effect is especially strong at cloud top, where the qc and Nc correlation can be as high as 0.95. We also found that the physically complete EF that accounts for the covariation of qc and Nc is significantly smaller than its counterpart that accounts only for the subgrid variation of qc, especially at cloud top. Although this study is based on limited cases, it suggests that the subgrid variations of Nc and its correlation with qc both need to be considered for an accurate simulation of the autoconversion process in GCMs.

Funder

Office of Science

National Science Foundation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference51 articles.

1. Ahlgrimm, M. and Forbes, R. M.: Regime dependence of cloud condensate variability observed at the Atmospheric Radiation Measurement Sites, Q. J. R. Meteor. Soc., 142, 1605–1617, https://doi.org/10.1002/qj.2783, 2016.

2. Atmospheric Radiation Measurement: ACE-ENA field campaign data, available at: https://adc.arm.gov/discovery/#/results/s::ACE-ENA, last access: 28 February 2021.

3. Barker, H. W., Wiellicki, B. A., and Parker, L.: A Parameterization for Computing Grid-Averaged Solar Fluxes for Inhomogeneous Marine Boundary Layer Clouds, Part II: Validation Using Satellite Data, J. Atmos. Sci. 53, 2304–2316, https://doi.org/10.1175/1520-0469(1996)053&lt;2304:APFCGA&gt;2.0.CO;2, 1996.

4. Beswick, K. M., Gallagher, M. W., Webb, A. R., Norton, E. G., and Perry, F.: Application of the Aventech AIMMS20AQ airborne probe for turbulence measurements during the Convective Storm Initiation Project, Atmos. Chem. Phys., 8, 5449–5463, https://doi.org/10.5194/acp-8-5449-2008, 2008.

5. Bony, S. and Dufresne, J.-L.: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851, 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3