Evaluation of four ground-based retrievals of cloud droplet number concentration in marine stratocumulus with aircraft in situ measurements

Author:

Zhang DamaoORCID,Vogelmann Andrew M.ORCID,Yang FanORCID,Luke Edward,Kollias Pavlos,Wang Zhien,Wu PengORCID,Gustafson Jr. William I.ORCID,Mei FanORCID,Glienke SusanneORCID,Tomlinson JasonORCID,Desai NeelORCID

Abstract

Abstract. Cloud droplet number concentration (Nd) is crucial for understanding aerosol–cloud interactions (ACI) and associated radiative effects. We present evaluations of four ground-based Nd retrievals based on comprehensive datasets from the Atmospheric Radiation Measurement (ARM) Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) field campaign. The Nd retrieval methods use ARM ENA observatory ground-based remote sensing observations from a micropulse lidar, Raman lidar, cloud radar, and the ARM NDROP (Droplet Number Concentration) value-added product (VAP), all of which also retrieve cloud effective radius (re). The retrievals are compared against aircraft measurements from the fast cloud droplet probe (FCDP) and the cloud and aerosol spectrometer (CAS) obtained from low-level marine boundary layer clouds on 12 flight days during summer and winter seasons. Additionally, the in situ measurements are used to validate the assumptions and characterizations used in the retrieval algorithms. Statistical comparisons of the probability distribution function (PDF) of the Nd and cloud re retrievals with aircraft measurements demonstrate that these retrievals align well with in situ measurements for overcast clouds, but they may substantially differ for broken clouds or clouds with low liquid water path (LWP). The retrievals are applied to 4 years of ground-based remote sensing measurements of overcast marine boundary layer clouds at the ARM ENA observatory to find that Nd (re) values exhibit seasonal variations, with higher (lower) values during the summer season and lower (higher) values during the winter season. The ensemble of various retrievals using different measurements and retrieval algorithms such as those in this paper can help to quantify Nd retrieval uncertainties and identify reliable Nd retrieval scenarios. Of the retrieval methods, we recommend using the micropulse lidar-based method. This method has good agreement with in situ measurements, less sensitivity to issues arising from precipitation and low cloud LWP and/or optical depth, and broad applicability by functioning for both daytime and nighttime conditions.

Funder

Biological and Environmental Research

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3