Equilibrium temperature distribution and Hadley circulation in an axisymmetric model

Author:

Tartaglione N.ORCID

Abstract

Abstract. The impact of the equilibrium temperature distribution, θE, on the Hadley circulation simulated by an axisymmetric model is studied. The θE distributions that drive the model are modulated here by two parameters, n and k, the former controlling the horizontal broadness and the latter controlling the vertical stratification of θE. In the present study, variations in the θE distribution mimic changes in the energy input of the atmospheric system, leaving as almost invariant the Equator–poles θE difference. Both equinoctial and time-dependent Hadley circulations are simulated and the results compared. The results give evidence that concentrated θE distributions enhance the meridional circulation and jet wind speed intensities, even with a lower energy input. The meridional circulation and the subtropical jet stream widths are controlled by the broadness of horizontal θE rather than by the vertical stratification, which is important only when θE distribution is concentrated at the Equator. The jet stream position does not show any dependence with n and k, except when the θE distribution is very wide (n = 3) and, in such a case, the jet is located at the mid-latitudes and the model temperature clamps to forcing θE. Using n = 2 and k = 1, we have the formulation of the potential temperature adopted in the classical literature. A comparison with other works is performed, and our results show that the model running in different configurations (equinoctial, solstitial and time dependent) yields results similar to one another.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3