Delineating the Eddy–Zonal Flow Interaction in the Atmospheric Circulation Response to Climate Forcing: Uniform SST Warming in an Idealized Aquaplanet Model

Author:

Chen Gang1,Lu Jian2,Sun Lantao1

Affiliation:

1. Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

2. Center for Ocean–Land–Atmosphere Studies, and Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia

Abstract

Abstract The mechanisms of the atmospheric response to climate forcing are analyzed using an example of uniform SST warming in an idealized aquaplanet model. A 200-member ensemble of experiments is conducted with an instantaneous uniform SST warming. The zonal mean circulation changes display a rapid poleward shift in the midlatitude eddy-driven westerlies and the edge of the Hadley cell circulation and a slow equatorward contraction of the circulation in the deep tropics. The shift of the poleward edge of the Hadley cell is predominantly controlled by the eddy momentum flux. It also shifts the eddy-driven westerlies against the surface friction, at a rate much faster than the expectation from the natural variability of the eddy-driven jet (i.e., the e-folding time scale of the annular mode), with much less feedback between the eddies and zonal flow. The transient eddy–zonal flow interactions are delineated using a newly developed finite-amplitude wave activity diagnostic of Nakamura. Applying it to the transient ensemble response to uniform SST warming reveals that the eddy-driven westerlies are shifted poleward by permitting more upward wave propagation in the middle and upper troposphere rather than reducing the lower-tropospheric baroclinicity. The increased upward wave propagation is attributed to a reduction in eddy dissipation of wave activity as a result of a weaker meridional potential vorticity (PV) gradient. The reduction allows more waves to propagate away from the latitudes of baroclinic generation, which, in turn, leads to more poleward momentum flux and a poleward shift of eddy-driven winds and Hadley cell edge.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference57 articles.

1. Testing a theory for the effect of latitude on the persistence of eddy-driven jets using CMIP3 simulations;Barnes;Geophys. Res. Lett.,2010

2. Effect of latitude on the persistence of eddy-driven jets;Barnes;Geophys. Res. Lett.,2010

3. The storm-track response to idealized SST perturbations in an aquaplanet GCM;Brayshaw;J. Atmos. Sci.,2008

4. The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface;Butchart;J. Atmos. Sci.,1986

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3