New methods to improve the vertical extrapolation of near-surface offshore wind speeds
-
Published:2021-06-16
Issue:3
Volume:6
Page:935-948
-
ISSN:2366-7451
-
Container-title:Wind Energy Science
-
language:en
-
Short-container-title:Wind Energ. Sci.
Author:
Optis Mike, Bodini NicolaORCID, Debnath Mithu, Doubrawa PaulaORCID
Abstract
Abstract. Accurate characterization of the offshore wind resource has been hindered by a sparsity of wind speed observations that span offshore wind turbine rotor-swept heights. Although public availability of floating lidar data is increasing, most offshore wind speed observations continue to come from buoy-based and satellite-based near-surface measurements. The aim of this study is to develop and validate novel vertical extrapolation methods that can accurately estimate wind speed time series across rotor-swept heights using these near-surface measurements. We contrast the conventional logarithmic profile against three novel approaches: a logarithmic profile with a long-term stability correction, a single-column model, and a machine-learning model. These models are developed and validated using 1 year of observations from two floating lidars deployed in US Atlantic offshore wind energy areas. We find that the machine-learning model significantly outperforms all other models across all stability regimes, seasons, and times of day. Machine-learning model performance is considerably improved by including the air–sea temperature difference, which provides some accounting for offshore atmospheric stability. Finally, we find no degradation in machine-learning model performance when tested 83 km from its training location, suggesting promising future applications in extrapolating 10 m wind speeds from spatially resolved satellite-based wind atlases.
Funder
Bureau of Ocean Energy Management
Publisher
Copernicus GmbH
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Reference44 articles.
1. Ahsbahs, T., Badger, M., Karagali, I., and Larsén, X. G.: Validation of
Sentinel-1A SAR Coastal Wind Speeds Against Scanning LiDAR, Remote Sens., 9, 552–569, https://doi.org/10.3390/rs9060552, 2017. a 2. Ahsbahs, T., Maclaurin, G., Draxl, C., Jackson, C. R., Monaldo, F., and Badger, M.: US East Coast synthetic aperture radar wind atlas for offshore wind energy, Wind Energ. Sci., 5, 1191–1210, https://doi.org/10.5194/wes-5-1191-2020, 2020. a, b, c 3. Atlantic Shores Offshore Wind: Atlantic Shores Floating LiDAR Buoy Data,
available at: https://erddap.maracoos.org/erddap/tabledap/AtlanticShores_ASOW-4_wind.html (last access: 11 June 2021), 2020. a 4. Baas, P., Bosveld, F., Lenderink, G., van Meijgaard, E., and Holtslag, A.
A. M.: How to design single-column model experiments for comparison with
observed nocturnal low-level jets, Q. J. Roy. Meteorol. Soc., 136, 671–684, https://doi.org/10.1002/qj.592, 2010. a 5. Badger, M., Peña, A., Hahmann, A. N., Mouche, A. A., and Hasager, C. B.:
Extrapolating Satellite Winds to Turbine Operating Heights, J. Appl. Meteorol. Clim., 55, 975–991, https://doi.org/10.1175/JAMC-D-15-0197.1, 2015. a, b, c, d
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|