Near‐surface wind profiles from numerical model predictions. Part I: Algorithms and comparisons with wind profile based on Monin–Obukhov similarity theory

Author:

Ma Yimin12ORCID

Affiliation:

1. Australian Bureau of Meteorology Melbourne Victoria Australia

2. Guangdong‐Hongkong‐Macao Greater Bay Area Weather Research Center for Monitoring Warning and Forecasting Shenzhen China

Abstract

AbstractWinds are predicted on the discrete grid of numerical weather and climate models. Winds distribute nonlinearly on the height in the near‐surface layer, and a 10 m wind prediction within the layer is often diagnosed upon the Monin–Obukhov similarity theory flux–profile relationship determined from winds at the lowest grid level, the near‐surface atmospheric stability, and surface properties, which leads to concerns that systemic biases may be introduced to the diagnosed wind. Algorithms are proposed to derive near‐surface wind profiles from the grid‐based numerical model forecasts at multiple model levels under the framework of momentum conservations with an implicit solution, associated with simple logarithmic plus linear interpolation in exceptional exemptional conditions. The diagnosed wind profile coheres to the model prediction at the grid level and exhibits differences from the profile using the conventional scheme in the quasi‐steady thermal stratification and non‐steady transitional conditions, retreating to the same logarithmic profile in the neutral condition.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference31 articles.

1. Computational design of the basic dynamical processes of the ucla general circulation model;Arakawa A.;Methods in Computational Physics: Advances in Research and Applications,1977

2. The drag on an undulating surface induced by the flow of a turbulent boundary layer

3. Flux Parameterization over Land Surfaces for Atmospheric Models

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3