Spatiotemporal observations of nocturnal low-level jets and impacts on wind power production

Author:

Weide Luiz EduardoORCID,Fiedler StephanieORCID

Abstract

Abstract. A challenge of an energy system that nowadays more strongly depends on wind power generation is the spatial and temporal variability in winds. Nocturnal low-level jets (NLLJs) are typical wind phenomena defined as a maximum in the vertical profile of the horizontal wind speed. A NLLJ has typical core heights of 50–500 m a.g.l. (above ground level), which is in the height range of most modern wind turbines. This study presents NLLJ analyses based on new observations from Doppler wind lidars. The aim is to characterize the temporal and spatial variability in NLLJs on the mesoscale and to quantify their impacts on wind power generation. The data were collected during the Field Experiment on Submesoscale Spatio-Temporal Variability (FESSTVaL) campaign from June to August 2020 in Lindenberg and Falkenberg (Germany), located at about 6 km from each other. Both sites have seen NLLJs in about 70 % of the nights with half of them lasting for more than 3 h. Events longer than 6 h occurred more often simultaneously at both sites than shorter events, indicating the mesoscale character of very long NLLJs. Very short NLLJs of less than 1 h occurred more often in Lindenberg than Falkenberg, indicating more local influences on the wind profile. We discussed different meteorological mechanisms for NLLJ formation and linked NLLJ occurrences to synoptic weather patterns. There were positive and negative impacts of NLLJs on wind power that we quantified based on the observational data. NLLJs increased the mean power production by up to 80 % and were responsible for about 25 % of the power potential during the campaign. However, the stronger shear in the rotor layer during NLLJs can also have negative impacts. The impacts of NLLJs on wind power production depended on the relative height between the wind turbine and the core of the NLLJ. For instance, the mean increase in the estimated power production during NLLJ events was about 30 % higher for a turbine at 135 m a.g.l. compared to one at 94 m a.g.l. Our results imply that long NLLJs have an overall stronger impact on the total power production, while short events are primarily relevant as drivers for power ramps.

Publisher

Copernicus GmbH

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3