ICDP workshop on the Lake Victoria Drilling Project (LVDP): scientific drilling of the world's largest tropical lake

Author:

Berke Melissa A.ORCID,Peppe Daniel J.,

Abstract

Abstract. Lake Victoria, which is bordered by Uganda, Tanzania, Kenya, and has a catchment that extends to Rwanda and Burundi, is home to the largest human population surrounding any lake in the world and provides critical resources across eastern Africa. Lake Victoria is also the world's largest tropical lake by surface area, but it is relatively shallow and without a major inlet, making it very sensitive to changes in climate, and especially hydroclimate. Furthermore, its size creates abundant habitats for aquatic fauna, including the iconic hyper-diverse cichlids, and serves as a major geographic barrier to terrestrial fauna across equatorial Africa. Given Lake Victoria's importance to the eastern African region, its sensitivity to climate, and its influences on terrestrial and aquatic faunal evolution and dispersal, it is vital to understand the connection between the lake and regional climate and how the lake size, shape, and depth have changed through its depositional history. This information can only be ascertained by collecting a complete archive of Lake Victoria's sedimentary record. To evaluate the Lake Victoria basin as a potential drilling target, ∼ 50 scientists from 10 countries met in Dar es Salaam, Tanzania, in July 2022 for the International Continental Scientific Drilling Program (ICDP)-sponsored Lake Victoria Drilling Project (LVDP) workshop. Discussions of the main scientific objectives for a future drilling project included (1) recovering the Pleistocene and Holocene sedimentary records of Lake Victoria that document the dynamic nature of the lake, including multiple lacustrine and paleosol sequences; (2) establishing the chronology of recovered sediments, including using extensive tephra fingerprinting and other techniques from deposits in the region; (3) reconstructing past climate, environment, lacustrine conditions, and aquatic fauna, using an integrated multi-proxy approach, combined with climate and hydrologic modeling; and (4) connecting new records with existing sedimentary snapshots and fossils exposed in deposits around the lake, tying archaeological, paleontological, sedimentological, tectonic, and volcanic findings to new drilling results. The LVDP provides an innovative way to address critical geological, paleontological, climatological, and evolutionary biological questions about Quaternary to modern landscapes and ecosystems in eastern Africa. Importantly, this project affords an excellent opportunity to help develop conservation and management strategies for regional responses to current and future changes in climate, land use, fisheries, and resiliency of at-risk communities in equatorial Africa.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3